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Abstract

A Bianchi type-III string cosmological models is investigated in scalar-tensor Brans-Dicke theory of
gravity (Phys. Rev. 124, 925, 1961). For an exact solution of modified Einstein 's field equations (EFEs), we
assumed time varying nature of deceleration parameter (DP)  along with relation between scale factor and time,

given by a(t)=[tet)] n
1

,  and n are  non-negative constants. It is noticed from study that the power index has
their own significance on the string cosmological models. It is also analyzed that the string tension density ()
is an increasing function of time whereas the energy density () and the cosmological constant () are decreasing
functions of time and converges to small value at present time.
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Introduction

One of the most challenging problem in cosmology is to know the structure formulation of the universe.
All the existing theories of gravitation are either based on amplification of quantum fluctuation in a scalar  field
 during inflation or upon symmetry breaking phase transition in the early universe.

Among all the existing alternative  theories, Brans-Dicke theory (BD)1 of gravity is one of the most
important scalar-theory due to its major role to address the various cosmological phenomena. According to BD
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theory, the gravitational constant G has dynamic in nature, it vary with space and time. It also relate the gravitation
constant G with scalar field (i.e. G-1). The modified Einstein field equations for BD theory of gravity are
expressed as
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2  is Laplace's operator, Rik is the

Ricci curvature tensor, Tik is the energy momentum tensor, R is the curvature scalar and is the Brans-Dicke
dimensionless coupling constant. Also the law of conservation of momentum may be expressed as

0T ik
k;  . (2)

Here 'semicolon' indicates co-variant derivative and 'comma' indicates partial derivative.
The variation in scalar field leads to the following equation:

2�k
k = 


R
2. (3)

This latter equation can be simplified by substituting for R from the contracted form of Eq. (1)  Eq. (3) can be
simplified by substituting value of or from Eq. (1). We finally get
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Equation (4) leads to the anticipated scalar wave equation for scalar field  with sources in matter. Because it
contains a scalar field in addition to the metric tensor gik, therefore sometime BD theory is known as the scalar-
tensor theory of gravitation.

Recent research findings2-5 indicate that viscosity play an important role in early stage evolution of the
universe. Also it is well known that at early stage of the universe when neutrino decoupling occurred, the matter
behaves like viscous fluid and coefficient of viscosity () decreases with time as universe expands. The viscous
string cosmological models has been studied by several authors6-11 in the context of general relativity, also many
authors12-17 have discussed bulk viscous string cosmological models in BD theory. Very recently many
cosmologists18-20 have been investigated the Bianchi type-III viscous cosmic string cosmological models in BD
theory.

Realizing the important of the topic in this study we have constructed bulk viscous string cosmological
model with time dependent DP and cosmological constant in BD theory of gravity. Plan of this paper as follows;
In section 2 metric and field equations governing the cosmological models are described, the exact solution of
field equations is presented in section 3. In section 4 the physical and kinematic behavior of the models have
been discussed. Finally, results and discussions are smmarized in last section 5.

Metric and Field Equations :
We may write spatially homogeneous and snisotropic Bianchi type-III space-time line element as

ds2=dt2+R2
1(t)dx2+e2sx R2

2(t) dy2+R2
3(t) dz2. (5)

Here potential R1, R2 and R3 are the functions of cosmic time t only and s is a constant.
The energy-momentum tensor Tik for a cloud of strings in the presence of bulk viscous fluid containing one
dimensional cosmic string is given by
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Tik  = (ρ + p̄)uiuk  + p̄ gik    λvivk,  (6)

where λ is a string tension density, p̄ is effective pressure, ρ is the proper energy density for cloud strings with
particles attached to them, uk  is the four-velocity vector and xk  is a unit space-like vector along the direction
of string.  The vectors uk  and xk  satisfy the conditions  ukuk  = 1 =  xkxk, ukxk  = 0.

T11  = p̄  ,           T22  = T33  = p̄,           T44  = ρ,
T  = T11 + T22 + T33 + T44  = 3p̄  ρ  λ.  (7)

Above ρ, p̄ and λ are the functions of cosmic time 't' only.  The particle density (ρp) of the configuration
is given as

ρ = ρp + λ.                                                                            (8)
The  string  tension  density  λ,  may  takes  positive  or  negative  values.  In  literature  Letelier,  Berman  and
Som21,22 established that a negative value of λ represents the universe filled with no string, whereas
positive value of λ indicate the universe filled with string particles.  Here the effective pressure p̄  may be define
as

p̄ = p - 3ξH,                                                                          (9)

where ξ  is the bulk viscosity coefficient and H  Hubble parameter.
For the metric given in equation (5) the field equation (1) may be expressed as:
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here an over head dot denote derivatives with respect to cosmic time t.
We may introduce cosmological parameters such as the spatial volume (V), the expansion scalar (θ), the
Hubble’s  parameter  (H),  the  DP  (q),  the  anisotropy  parameter (Am)  and  the  shear  scalar  (σ)  for  the metric
(5) defined as,

V  = a3  = R1R2R3,                                                                   (16)
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Here,       Hi  = Hi   H,      i = 1, 2, 3.
Now we required the solution of above stated field equations (10)-(15).  This is presented in next section.

Solution of the Field Equations :

On integrating equation (14), we have
R1  = l0R2,                                                                          (21)

here l0  is a constant of integration, it can be taken as unity to avoid further complication, Therefore
R2  =  R1.                                                                            (22)

On putting R2  = R1  into the field equations (10)-(13) and (15), we get following set of field equations,
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The set field equations (23)-(26) contains four independent equations along with seven unknown parameters
R1,  R3,  λ,  ρ, p̄,     and Λ. Therefore for an exact solution we need at least three more constraintsrelated to these
parameters.  Hence, we applying following assumptions:
(i) It is assumed that the bulk viscosity function ξ(t) is proportional to some power of energy density ρ
(see23, 24) i.e.
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ξ  ρβ,                                                                             (27)
ξ = ξ0ρβ,                                                                            (28)

here ξ0  is proportionality constant and β  0 is a constant.  Now with the help of equations (7), (24)-(26)
we get,
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In this context we have discuss two cases i.e.    = 0 and  = 1.

Case  1:  If  β = 0,  then  ξ = ξ0
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On subtracting equation (25) from equation (30), we have
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On substituting the value of 8πρ  from equation(31) into equation(25), we have expression for cosmological
constant Λ as
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Case  2:  If  β = 1,  then  ξ = ξ0ρ
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(ii)  The DP q is taken as a function of cosmic time 't' i.e.
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as studied and published by our peer research group25–28, we may also believed that time dependence of the
scale factor a(t), reflect mainly in expansion rate of the universe.  So under this motivation we have decided to
find an exact solution of EFEs along with study of various others associated aspect with time varying DP. The
general solution of equation (35) is given by the ansatz for scale factor in term of cosmic time as suggested by
Amirhashchi et al.  2011 29 as

a(t) = [tαet)] n
1

 ,                                                                       (36)

here α and n are non negative constants.
(iii)  Collins  et  al.30  suggested  that  the  shear  scalar    is  proportional  to  scalar  expansion  θ  which  we
may write as

R1  = Rm
3 ,                                                                           (37)

where m a is positive constant, which takes care of the anisotropy of the space.
(iv)  Without  any  loss  of  generality,  we  shall  assume  that  the  scalar  field    is  some  power  of  the  scale
factor; i.e., the power law relation between scale factor a and scalar field  has been suggested by Johri and
Desikan (see31) may be expressed as,

 = 0[a(t)]b,                                                                        (38)
where 0  is a proportionality constant and b is an arbitrary constant.
From equations (13), (27) and (28), we get the expression for the metric potential functions as
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After substituting the values of R1, R2  and R3  from equation (39) and (40), the metric (5) can be written as

ds2  =  dt2 + [tet] )1m2(n
m6
  (dx2 + e2sxdy2) + [tet] )1m2(n

6
  dz2 .                                          (43)

The metric (5) in term of redshift parameter z, may be expressed as

ds2  =  dt2 + [1 + z] 1m2
m6



 (dx2 + e2sxdy2) + [tαet] 1m2

6



 dz2 .                                             (44)

Physical and Kinematical  Properties of the Models :

The some parameters such as spatial volume, expansion scalar (θ), Hubble parameter (H), DP (q), shear
scalar (σ) and anisotropy parameter (Am) are obtain by following mathematical expression:

V  = ABC = [tαet] n
3

,                                                                                                                           (45)
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Above equation indicates Am  is constant throughout evolution of the universe.

Case  1:  β = 0
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Case  2:  β = 1
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Figure 1. Plot of redshift z versus DP q.
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We have presented the behavior of DP q with redshift parameter z in Fig.1, it is clear from concern
figure that  the  q  increasing  with  z  and  changing  sign  negative  to  positive  for  n  =  0.6,  1.0,  n  =  1.4,  which
indicates the transition phase of the universe.

From  Fig. 2,  we  observe  that  the  string  tension  density  λ  is  an  increasing  function  of  time,  which
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is  always  negative  and  approaches  to  zero  at  late  time.  As  suggested  by  Letelier  (1979)  [21]  the  string
tension density λ may have positive or negative values, corresponding to λ > 0 the string dominant over
particle  whereas  in  case  of  λ  <  0  the  string  disappear  from  universe.   In  our  case  the  particles  density
dominate over the string tension density at present epoch.  It is self exploratory from Fig. 3 and Fig. 4 the energy
density ρ and particle density ρp  are decreasing function of cosmic time for both cases β = 0 and β = 1.

In  Fig. 5  we  have  plotted  cosmological  constant  Λ  with  cosmic  time  t.  It  may  be  seen  from  figure
that cosmological constant Λ is decreasing function of time and approaches to small value at late time.  This
type of behavior of Λ is good agreement with recent cosmic observations.

Figure 3.  Plot of energy density ρ versus time t.  For β = 0.1, b = 1, ω = 1, 0  = ξ0  = 1

Figure 4.  Plot of particle density ρp  versus time t.  For β = 0, 1, b = 1, ω = 1, 0  = ξ0  = 1

Figure 2.  Plot of string tension density  versus time t.  For b = 1, ω = 1, 0  = 1.
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Concluding Remarks

As discussed in foregoing sections we have presented the spatially homogeneous and anisotropic
Bianchi- III space-time cosmological model with time dependent DP q and dynamical cosmological constant Λ

in the  frame  work  of  BD  theory  of  gravity  with  additional  assumption  (a)  =  [tαet] n
1

 ,  where  n  and  α  are
positive  constants.   We  have  presented  a  class  of  models  with  different  choices  of  n  and  β.   The  main
conclusion of the model are presented below:

• The current study show that the universe starts evolving from zero volume at t = 0 (see eq(45)) and thereafter
expanding continuously from early decelerating phase to present accelerating phase.  As t   0,  the
expansion  scalar  θ   ,  which  indicates  the  early  inflationary  phase  of  the  universe. Therefore we
can say that the universe grow up from Big-Bang.

• The universe show acceleration behavior for n  1 and transition phase i.e.  early deceleration phase to
current acceleration phase for n > 1.  This type nature of universe show the signature flipping.

• It  is  observed  form  Fig. 2  and  Fig. 3  for  both  cases  β  = 0  and  β  = 1,  which  indicates  that  the  string
tension density is negative time whereas particle density pρ  is positive at early time and at late time both are
converges to zero.  Hence, the string disappears from universe at present time.

• The cosmological constant Λ is a decreasing function of time and it converges to a small positive value at
late  time  (See  Fig. 5).  This  type  of behavior  of cosmological  constant  Λ is  supported  by  recent
observations data.
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