

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES

An International Open Free Access Peer Reviewed Research Journal of Mathematics website:- www.ultrascientist.org

A study of Fibonacci \& Lucas Vectors

AMITAVA SARASWATI
Department of Mathematics St. Paul's School, Indore (India)
Corresponding Author Email :- amitava.saraswati@gmail.com
http://dx.doi.org/10.22147/jusps-A/310901

Acceptance Date 20th November, 2019, Online Publication Date 23rd November, 2019

Abstract

An attempt has been made to put forth certain properties of Lucas and Fibonacci vectors and establish a relationship between the vectors using a special matrix. Cross products between Fibonacci and Lucas vectors have been investigated.

Also, it was observed that, there exists a homeomorphism between the Fibonacci plane and any plane parallel to it.

Key words : Fibonacci and Lucas numbers, position vectors, vector product, scalar triple product.
Mathematics Subject Classification (2000) : 11B39

1 Introduction

1.1 Definition

A vector is a quantity having both magnitude and direction. It is denoted by a directed line segment. The length of the segment denotes the magnitude of the vector and the direction is shown by the unit vectors acting along the x, y and z axes, namely \hat{i}, \hat{j} and \hat{k}.

1.2 Fibonacci and Lucas Vectors:

Here, we shall discuss some special vectors in space which are in the form $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$, where x , y and z are the direction ratios and are denoted by consecutive Fibonacci or Lucas numbers.

Consider three consecutive Fibonacci numbers $F_{n}, \quad F_{n+1}, \quad F_{n+2}$ or three Lucas numbers L_{n}, $L_{n+1}, \quad L_{n+2}$ denoted by x, y and z respectively.

Since a Fibonacci number is obtained by adding the two previous Fibonacci numbers or a

Lucas number is obtained by adding two previous Lucas numbers, we have

$$
\begin{equation*}
F_{n+2}=F_{n}+F_{n+1} \quad \text { or } \quad L_{n+2}=L_{n}+L_{n+1} \tag{1}
\end{equation*}
$$

hence we get

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}+\mathrm{y} \tag{2}
\end{equation*}
$$

$\Rightarrow x+y-z=0$ represents a plane through the origin containing all Fibonacci position vectors $\left(F_{n}\right.$, $\left.F_{n+1}, \quad F_{n+2}\right)$ or $\left(F_{n+1}, \quad F_{n}, \quad F_{n+2}\right)$ or all Lucas vectors $\left(L_{n}, \quad L_{n+1}, \quad L_{n+2}\right)$ or $\left(L_{n+1}, \quad L_{n}, \quad L_{n+2}\right)$

2 Scalar Triple Product:

The fact that the points $\left(F_{n}, \quad F_{n+1}, \quad F_{n+2}\right),\left(L_{n}, \quad L_{n+1}, \quad L_{n+2}\right),\left(F_{n+1}, \quad F_{n}, \quad F_{n+2}\right)$ and $\left(L_{n+1}\right.$, $L_{n}, \quad L_{n+2}$) lie in the plane is reiterated by proving a scalar triple product or box product to be zero, as shown below.
Let the three vectors $\vec{a}, \vec{b}, \vec{c}$ be denoted by

$$
\left(F_{n}+k, F_{n+k+1}, \quad F_{n+k+2}\right)
$$

$\left.\vec{a}=\left(F_{n+k}-F_{n}\right) \hat{i}+\left(F_{n+k+1}\right)-F_{n+1}\right) \hat{j}+\left(F_{n+k+2}-F_{n+2}\right) \hat{k}$
$\vec{b}=\left(F_{n+p}-F_{n+k}\right) \hat{i}+\left(F_{n+p+1}-F_{n+k+1}\right) \hat{j}+\left(F_{n+p+2}-F_{n+k+2}\right) \hat{k}$
$\vec{c}=\left(F_{n+p}-F_{n}\right) \hat{i}+\left(F_{n+p+1}-F_{n+1}\right) \hat{j}+\left(F_{n+p+2}-F_{n+2}\right) \hat{k}$

$$
\begin{aligned}
{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] } & =\left|\begin{array}{lcc}
F_{n+k}-F_{n} & F_{n+k+1}-F_{n+1} & F_{n+k+2}-F_{n+2} \\
F_{n+p}-F_{n+k} & F_{n+p+1}-F_{n+k+1} & F_{n+p+2}-F_{n+k+2} \\
F_{n+p}-F_{n} & F_{n+p+1}-F_{n+1} & F_{n+p+2}-F_{n+2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
0 & F_{n+k+1}-F_{n+1} & F_{n+k+2}-F_{n+2} \\
0 & F_{n+p+1}-F_{n+k+1} & F_{n+p+2}-F_{n+k+2} \\
0 & F_{n+p+1}-F_{n+1} & F_{n+p+2}-F_{n+2}
\end{array}\right| C_{1} \rightarrow C_{1}+C_{2}-C_{3}
\end{aligned}
$$

$\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar.
We know that in a 2D plane, a Fibonacci vector is denoted by $\left[\begin{array}{ll}F_{n+1} & F_{n}\end{array}\right]$ and a Lucas vector by [lll$L_{n+1} L_{n}$]. Now, using an R matrix, that is $\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]$ we can transform a Lucas vector into a Fibonacci vector.

$$
\begin{aligned}
{\left[\begin{array}{ll}
L_{n+1} & L_{n}
\end{array}\right] \cdot\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right] } & =\left[\begin{array}{ll}
L_{n+1}+2 L_{n} & 2 L_{n+1}-L_{n}
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 F_{n+1} & 5 F_{n}
\end{array}\right] \\
& =5\left[\begin{array}{ll}
F_{n+1} & F_{n}
\end{array}\right]
\end{aligned}
$$

Theorem 1:
In a 3D vector space a Fibonacci vector $\left[\begin{array}{lll}F_{n+1} & F_{n} & F_{n+2}\end{array}\right]$ is transformed into a Lucas vector [L_{n+1}
$\left.L_{n+2} \quad L_{n+3}\right]$ when multiplied by the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 3\end{array}\right]$
Proof

$$
\begin{aligned}
{\left[\begin{array}{lll}
F_{n+1} & F_{n} & F_{n+2}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 0 & 0 \\
0 & 1 & 3
\end{array}\right] } & =\left[\begin{array}{lll}
F_{n+1}+2 F_{n} & 2 F_{n+1}+F_{n+2} & F_{n+1}+3 F_{n+2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
L_{n+1} & L_{n+2} & L_{n+3}
\end{array}\right]
\end{aligned}
$$

Theorem 2 :
A Fibonacci vector
[$\left.\begin{array}{lllll}F_{n} & F_{n+1} & F_{n+2}\end{array}\right]$ is transformed into a Lucas vector [$L_{n+1} \quad L_{n+2} \quad L_{n+3}$] when multiplied by the matrix $\left[\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]$
Proof:

$$
\begin{aligned}
{\left[\begin{array}{lll}
F_{n} & F_{n+1} & F_{n+2}
\end{array}\right] \cdot\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right] } & =\left[\begin{array}{lll}
2 F_{n}+F_{n+1} & 2 F_{n+1}+F_{n+2} & F_{n+1}+3 F_{n+2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
L_{n+1} & L_{n+2} & L_{n+3}
\end{array}\right]
\end{aligned}
$$

also,

$$
\begin{equation*}
|L|=3.6 \times|F| \tag{3}
\end{equation*}
$$

where $|\mathrm{F}|=\sqrt{F_{n+1}^{2}+F_{n}^{2}+F_{n+2}^{2}}$ and $|L|=\sqrt{L_{n+1}^{2}+L_{n+2}^{2}+L_{n+3}^{2}}$

If $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]$, then $A^{-1}=\frac{1}{10}\left[\begin{array}{rrr}5 & 0 & 0 \\ -3 & 6 & -2 \\ 1 & -2 & 4\end{array}\right]$
F.A $=L$
$\Rightarrow L \cdot A^{-1}=F$
$\left[\begin{array}{ll}L_{n+1} & L_{n+2} \\ L_{n+3}\end{array}\right] \cdot \frac{1}{10}\left[\begin{array}{rrr}5 & 0 & 0 \\ -3 & 6 & -2 \\ 1 & -2 & 4\end{array}\right]=\frac{1}{10}\left[5 L_{n+1}-3 L_{n+2}+L_{n+3} \quad 6 L_{n+2}-2 L_{n+3} \quad-2 L_{n+2}+4 L_{n+3}\right]$

$$
=\left[\begin{array}{lll}
F_{n} & F_{n+1} & F_{n+2}
\end{array}\right]
$$

3 Homeomorphism:

The direction ratios of the normal to the plane $x+y-z=0$ are $1,1,-1$.
The equation to the normal through any arbitrary point $\left(F_{n}, \quad F_{n+1}, \quad F_{n+2}\right)$ is

$$
\begin{gather*}
\frac{x-F_{n}}{1}=\frac{y-F_{n+1}}{1}=\frac{z-F_{n+2}}{-1}=k \\
x=F n+k, \quad y=F_{n+1}+k, \quad z=F_{n+2}-k \tag{4}
\end{gather*}
$$

Now, let there be a plane parallel to the Fibonacci plane $x+y-z=0$ as $x+y-z=\mu$ The normal line intersects the plane $x+y-z=\mu$ at $\left(F_{n}+k, \quad F_{n+1}+\mathrm{k}, \quad F_{n+2}-k\right)$

$$
\begin{aligned}
\text { Hence } x+y-z=\mu & \\
\Rightarrow\left(F_{n}+k\right)+\left(F_{n+1}+k\right)-\left(F_{n+2}-k\right) & =\mu \\
\Rightarrow 3 k & =\mu \\
\Rightarrow k & =\frac{\mu}{3}
\end{aligned}
$$

Any point $\left(F_{n}, F_{n+1}, F_{n+2}\right)$ on $x+y-z=0$ have an image $\left(F_{n}+\frac{\mu}{3}, F_{n+1}+\frac{\mu}{3}, F_{n+2}-\frac{\mu}{3}\right)$ on the plane $x+y-z=\mu$

Similarly, any point $\left(L_{n}, \quad L_{n+1}, \quad L_{n+2}\right)$ on $x+y-z=0$ have an image $\left(L_{n}+\frac{\mu}{3}, \quad L_{n+1}+\frac{\mu}{3}, \quad L_{n+2}-\frac{\mu}{3}\right)$ on the plane $x+y-z=\mu$

Hence, the plane $x+y-z=\mu$ is homeomorphic to the Fibonacci plane $x+y-z=0$
4. Vector Product :

Consider the vectors,
$\vec{F}_{1}=F_{n} \hat{i}+F_{n+1} \hat{j}+F_{n+2} \hat{k}, \quad \vec{F}_{2}=F_{n+1} \hat{i}+F_{n} \hat{j}+F_{n+2} \hat{k}$
$\vec{L}_{1}=L_{n} \hat{i}+L_{n+1} \hat{j}+L_{n+2} \hat{k}, \quad \vec{L}_{2}=L_{n+1} \hat{i}+L_{n} \hat{j}+L_{n+2} \hat{k}$

Theorem 3

$$
\begin{aligned}
\vec{F}_{1} \times \vec{L}_{1} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
F_{n} & F_{n+1} & F_{n+2} \\
L_{n} & L_{n+1} & L_{n+2}
\end{array}\right| \\
& =\left[F_{n+1} L_{n+2}-L_{n+1} F_{n+2}\right] \hat{i}+\left[F_{n+2} L_{n}-L_{n+2} F_{n}\right] \hat{j}+\left[F_{n} L_{n+1}-L_{n} F_{n+1}\right] \hat{k} \\
& =\left[F_{n+1} L_{n}-L_{n+1} F_{n}\right] \hat{i}+\left[F_{n+1} L_{n}-L_{n+1} F_{n}\right] \hat{j}+\left[F_{n} L_{n+1}-L_{n} F_{n+1}\right] \hat{k} \\
& =\left[F_{n+1} L_{n}-L_{n+1} F_{n}\right][\hat{i}+\hat{j}-\hat{k}] \\
& =\left[\frac{\left\{\alpha^{n+1}-\beta^{n+1}\right\}}{\{\alpha-\beta\}} \cdot\left\{\alpha^{n}+\beta^{n}\right\}-\left\{\alpha^{n+1}+\beta^{n+1}\right\} \frac{\left\{\alpha^{n}-\beta^{n}\right\}}{\{\alpha-\beta\}}\right][\hat{i}+\hat{j}-\hat{k}] \\
& =(-1)^{\mathrm{n}} \cdot 2 \cdot[\hat{i}+\hat{j}-\hat{k}]
\end{aligned}
$$

Theorem 4:

$$
\begin{aligned}
\vec{F}_{2} \times \vec{L}_{2} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
F_{n+1} & F_{n} & F_{n+2} \\
L_{n+1} & L_{n} & L_{n+2}
\end{array}\right| \\
& =\left[F_{n} L_{n+2}-L_{n} F_{n+2}\right] \hat{i}+\left[F_{n+2} L_{n+1}-L_{n+2} F_{n+1}\right] \hat{j}+\left[F_{n+1} L_{n}-L_{n+1} F_{n}\right] \hat{k} \\
& =\left[F_{n} L_{n+1}-L_{n} F_{n+1}\right][\hat{i}+\hat{j}-\hat{k}] \\
& =\left[\frac{\left\{\alpha^{n}-\beta^{n}\right\}}{\{\alpha-\beta\}} \cdot\left\{\alpha^{n+1}+\beta^{n+2}\right\}-\left\{\alpha^{n}+\beta^{n}\right\} \frac{\left\{\alpha^{n+1}-\beta^{n+1}\right\}}{\{\alpha-\beta\}}\right][\hat{i}+\hat{j}-\hat{k}] \\
& =(-1)^{n+1} \cdot 2 \cdot[\hat{i}+\hat{j}-\hat{k}]
\end{aligned}
$$

Theorem 5:

$$
\begin{aligned}
\vec{F}_{1} \times \vec{L}_{2} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
F_{n} & F_{n+1} & F_{n+2} \\
L_{n+1} & L_{n} & L_{n+2}
\end{array}\right| \\
& =\left[F_{n+1} L_{n+2}-L_{n} F_{n+2}\right] \hat{i}+\left[F_{n+2} L_{n+1}-L_{n+2} F_{n}\right] \hat{j}+\left[F_{n} L_{n}-L_{n+1} F_{n+1}\right] \hat{k} \\
& =\left[F_{n+1} L_{n+1}-L_{n} F_{n}\right][\hat{i}+\hat{j}-\hat{k}] \\
& =F_{2 n+1}[\hat{i}+\hat{j}-\hat{k}]
\end{aligned}
$$

Theorem 6:

$$
\begin{aligned}
\vec{F}_{2} \times \vec{L}_{1} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
F_{n+1} & F_{n} & F_{n+2} \\
L_{n} & L_{n+1} & L_{n+2}
\end{array}\right| \\
& =\left[F_{n} L_{n+2}-L_{n+1} F_{n+2}\right] \hat{i}+\left[F_{n+2} L_{n}-L_{n+2} F_{n+1}\right] \hat{j}+\left[F_{n+1} L_{n+1}-L_{n} F_{n}\right] \hat{k} \\
& =\left[F_{n} L_{n}-L_{n+1} F_{n+1}\right][\hat{i}+\hat{j}-\hat{k}] \\
& =(-1) F_{2 n+1}[\hat{i}+\hat{j} " \hat{k}]
\end{aligned}
$$

Conclusions

In this work, an investigation was done on Fibonacci and Lucas vectors. Two transformation matrices were created to transform Fibonacci vectors to Lucas vectors. A homeomorphism was established between planes parallel to the Fibonacci plane. Vector products between Fi- bonacci and Lucas vectors were investigated and four results were obtained in the process.

References

1. Bro. Alfred. U, An Introduction To Fibonacci Discovery, The Fibonacci Association, (1965).
2. Koshy Thomas, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, (2001).
