

Characterizaton and Theorems on Quaternion Doubly Stochastic Matrices

${ }^{1}$ GUNASEKARAN K. and ${ }^{2}$ SEETHADEVI R.
 Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India.

Corresponding Author Email:-seethadevir1 @ gmail.com
http://dx.doi.org/10.22147/jusps-A/290402
Acceptance Date 28th Feb., 2017, Online Publication Date 2nd April, 2017

Abstract

The concepts of quaternion symmetric doubly stochastic are developed, basic theorems and some results for these matrices and characterization are analyzed with examples.

Key words : Doubly stochastic matrix, quaternion symmetric doubly stochastic matrix, quaternion orthogonal symmetric doubly stochastic matrix, centro doubly stochastic matrix.

Subject code classification:15B99, 15A51

\section*{Introduction}

The concepts of quaternion symmetric doubly stochastic matrix are applied ${ }^{1-4}$. In this paper, the quaternion symmetric doubly stochastic matrix is developed in quaternion matrices. Denoted by A^{T} is the transpose of A and A* is the conjugate transpose of A.

\section*{Definition (1) ${ }^{5}$}

Suppose $A=\left(a_{i j}\right)_{n \times n}$ is a doubly stochastic matrix such that, A matrix $A=\left(a_{i j}\right)_{n \times n}$ is called a doubly stochastic matrix if $\sum_{i=1}^{n} a_{i j}=1$ and $\sum_{j=1}^{n} a_{i j}=1$ and all $\mathrm{a}_{\mathrm{ij}} \geq 0$

1. QUATERNION SYMMETRIC DOUBLY STOCHASTIC MATRIX.

Definition 1.1
A matrix $\mathrm{A} \in \mathrm{H}^{\mathrm{n} \mathrm{\times n}}$ is said to be quaternion symmetric doubly stochastic if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$ and $\sum_{i=1}^{n} a_{i j}=1, j=1,2, \ldots . n$ and $\sum_{j=1}^{n} a_{i j}=1, i=1,2, \ldots n$ and all $\mathrm{a}_{\mathrm{ij}} \geq 0$ (or) if A is doubly stochastic and also symmetric then it is called a quaternion symmetric doubly stochastic matrix.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)

Theorem 1.1

Let A be a square matrix in $H^{n \times n}$. Then A is quaternion symmetric doubly stochastic iff $A=A^{T}$.
Proof:
Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be an $\mathrm{n} \times \mathrm{n}$ matrix. Then $\mathrm{A}^{\mathrm{T}}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ is an $\mathrm{n} \times \mathrm{n}$ matrix. Where $\mathrm{b}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$ for all i, j.
\Rightarrow Let A is quaternion symmetric doubly stochastic. Then $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{j} \mathrm{j}}$

$$
\text { for all } \mathrm{i}, \mathrm{j} \text { from the definition, } \mathrm{a}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}} \text { for all } \mathrm{i}, \mathrm{j} \text {. }
$$

Therefore,

$$
\mathrm{A}=\mathrm{A}^{\mathrm{T}} .
$$

Let $\mathrm{A}=\mathrm{A}^{\mathrm{T}}$ (Then $\mathrm{a}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}$ for all i, j

$$
\left.=a_{i j} \text { for all } i, j .\right)
$$

$\Rightarrow \mathrm{A}$ is quaternion symmetric doubly stochastic matrix

$$
\begin{aligned}
& \Rightarrow A^{T}=A \text { then } b_{i j}=a_{i j} \text { for all } \mathrm{i}, \mathrm{j} \\
& =b_{\mathrm{ji}} \text { for all } \mathrm{i}, \mathrm{j}
\end{aligned}
$$

$\Rightarrow A^{T}$ is quaternion symmetric doubly stochastic matrix.

Theorem 1.2:

If A and B are $n \times n$ quaternion symmetric doubly stochastic matrices, then
(1) $1 / 2(A+B)^{T}=1 / 2\left(A^{T}+B^{T}\right)$
(2) $(k A)^{T}=k A^{T}$, where k is scalar are also quaternion symmetric matrices.

Proof:
(1) Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{n} \mathrm{\times n}}$ and $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)_{\mathrm{n} \mathrm{\times n}}$ be quaternion symmetric doubly stochastic matrices.

Then $1 / 2(A+B)$ is an $n \times n$ quaternion symmetric doubly stochasticmatrix.
Since A^{T} and B^{T} are $n \times n$ quaternion symmetric doubly stochastic matrices then $1 / 2\left(A^{T}+B^{T}\right)$ is also $n \times n$ quaternion symmetric matrix. Thus $1 / 2(A+B)^{T}$ and $1 / 2\left(A^{T}+B^{T}\right)$ are of same type
$(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry of $1 / 2(\mathrm{~A}+\mathrm{B})^{\mathrm{T}}=(\mathrm{j}, \mathrm{i})^{\text {th }}$ entry of $1 / 2(\mathrm{~A}+\mathrm{B})=1 / 2\left(\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ji}}\right)$

$$
\begin{aligned}
& =1 / 2\left\{(\mathrm{j}, \mathrm{i})^{\text {th }} \text { entry of } \mathrm{A}+(\mathrm{j}, \mathrm{i})^{\mathrm{th}} \text { entry of } \mathrm{B}\right\} \\
& =\left\{(\mathrm{i}, \mathrm{j})^{\text {h }} \text { entry of } \mathrm{A}^{\mathrm{T}}+(\mathrm{i}, \mathrm{j})^{\text {th }} \text { entry of } \mathrm{B}\right\} \\
& =1 / 2\left\{(\mathrm{i}, \mathrm{j})^{\text {th }} \text { entry of }\left(\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}\right)\right\} \\
& \Rightarrow 1 / 2(\mathrm{~A}+\mathrm{B})^{\mathrm{T}}=1 / 2\left(\mathrm{~A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}\right)
\end{aligned}
$$

(2) Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$ quaternion symmetric doubly stochastic matrix then $(\mathrm{kA})_{\mathrm{n} \times \mathrm{n}}$ quaternion symmetric doubly stochastic matrix. wherek is Scalar and hence also $(k A)^{T}{ }_{n \times n}$ quaternion symmetric matrix. Since $\left(A^{T}\right)_{n \times n}$ quaternion symmetric doubly stochastic matrix and also $(k A)$) quaternion symmetric matrix. Hence $(k A)^{\mathrm{T}}$ and $\left(k A^{\mathrm{T}}\right)$ are of the same type.
Also $(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry of $(\mathrm{kA})^{\mathrm{T}}=(\mathrm{j}, \mathrm{i})$ entry of (kA)
$=\mathrm{k} \mathrm{a} \mathrm{a}_{\mathrm{ij}}$
$=\mathrm{k}(\mathrm{j}, \mathrm{i})^{\mathrm{th}}$ entry of A .
$=\mathrm{k}(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry of A^{T}
$=(\mathrm{i}, \mathrm{j})^{\mathrm{th}}$ entry of kA^{T}.
$(k A)^{T}=k A^{T}$, where k is scalar.
Example1.1: To prove $1 / 2(\mathrm{~A}+\mathrm{B})^{\mathrm{T}}=1 / 2\left(\mathrm{~A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}\right)$.
Let
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{B}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$
$\mathrm{A}^{\mathrm{T}}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{B}^{\mathrm{T}}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$
$1 / 2(\mathrm{~A}+\mathrm{B})^{\mathrm{T}}=1 / 2\left(\mathrm{~A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}\right)=1 / 2(\mathrm{~A}+\mathrm{B})$
$1 / 2(\mathrm{~A}+\mathrm{B})^{\mathrm{T}}=1 / 2\left(\begin{array}{ccc}2+3 i+3 j & 4-2 i-2 j & -4-i-j \\ 4-2 i-2 j & -9+j & 7+2 i+j \\ -4-i-j & 7+2 i+j & -1-i\end{array}\right)$
$\mathrm{A}+\mathrm{B}=\left(\begin{array}{ccc}2+3 i+3 j & 4-2 i-2 j & -4-i-j \\ 4-2 i-2 j & -9+j & 7+2 i+j \\ -4-i-j & 7+2 i+j & -1-i\end{array}\right)$
$1 / 2(\mathrm{~A}+\mathrm{B})^{\mathrm{T}}$ is an quaternion symmetric doubly stochastic matrices.
Hence proved $1 / 2(A+B)^{T}=1 / 2\left(A^{T}+B^{T}\right)=1 / 2(A+B)$
Property 1.1:
If $\mathrm{A} \in \mathrm{H}^{\mathrm{n} \times \mathrm{n}}$ is quaternion symmetric doubly stochastic matrix then A^{n} is also quaternion symmetric doubly stochastic matrix for positive integer n

Proof:
Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be an $\mathrm{n} \times \mathrm{n}$ matrix. Then $\mathrm{A}^{\mathrm{n}}=\left(\mathrm{b}_{\mathrm{ji}}\right)$ is an $\mathrm{n} \times \mathrm{n}$ matrix, where $\mathrm{b}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}$.
for all i, j.

$$
\Rightarrow \text { : Suppose A is quaternion symmetric doubly stochastic. }
$$

Then $a_{i j}=a_{i j}$ for all i, j from definition

$$
=b_{i j} \text { for all } \mathrm{i}, \mathrm{j} .
$$

Therefore $A=A^{T}$

$$
\Leftarrow: \text { Suppose A = A }{ }^{\mathrm{T}}
$$

Then $\mathrm{a}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}$ for all i, j.
$=\mathrm{a}_{\mathrm{ji}}$ for all i, j.
$\Rightarrow \mathrm{A}$ is quaternion symmetric doubly stochastic matrix.
Example 1.2: quaternion symmetric doubly stochastic matrices.
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{A}^{\mathrm{T}}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{A}=\mathrm{A}^{\mathrm{T}}$
$\Rightarrow \mathrm{A}$ is quaternion symmetric doubly stochastic matrix.
Property 1.2:
Products of any two quaternion symmetric doubly stochastic matrices are not an quaternion symmetric doubly
stochastic matrix if and only if quaternion symmetric doubly stochastic matrix is non - commutative.
Proof:
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{B}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$
$\mathrm{AB}=\left(\begin{array}{ccc}3+k & -4-i-k & 2 \\ -16+6 i+7 j & 30+7 j & -12-5 i \\ 14+2 i & -20 & 11-i+j\end{array}\right)$
Theorem 1.3:
If A and B are $n \times n q$ uaternion symmetric doubly stochastic matrices then $(A B)^{T} \neq B^{T} A^{T}$ is not a quaternion symmetric doubly stochastic matrix.
Proof:
Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$ and $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$ quaternion symmetric doubly matrices then $\mathrm{AB}=\left(\mathrm{c}_{\mathrm{ji}}\right)$ is an $\mathrm{n} \times \mathrm{n}$ quaternion symmetric doubly stochastic matrix where, $\mathrm{C}_{\mathrm{ij}}=\sum_{k=1}^{n} a_{i k} b_{k j}$
$\operatorname{Let}(\mathrm{AB})^{\mathrm{T}}=\left(\mathrm{d}_{\mathrm{ij}}\right)$ where $\mathrm{d}_{\mathrm{ij}}=\mathrm{c}_{\mathrm{ji}}=\sum_{k=1}^{n} a_{j k} b_{k i}$ the $(\mathrm{AB})^{\mathrm{T}}{ }_{\mathrm{nxn}}$ quaternion symmetric doubly stochastic matrix.
Let $A^{T}=\left(e_{i j}\right)$ where $e_{i j}=a_{j i}$ and $B^{T}=\left(f_{i j}\right)$ where $f_{i j}=b_{j i i}$. Since $(B)^{T}{ }_{n \times n}$ and $(A)^{T}{ }_{n \times n}$ quaternion symmetric doubly stochastic matrices respectively. Hence $\left(B^{T} A^{T}\right)_{n \times n}$ quaternion symmetric doubly stochastic matrix. Thus (AB) ${ }^{T}$ and $B^{T} A^{T}$ are of same type.
quaternion does not satisfy commute properly.
Let $\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=\left(\mathrm{g}_{\mathrm{ij}}\right)$ where $\mathrm{g}_{\mathrm{ij}}=\sum_{k=1}^{n} f_{i k} e_{k j}$
Also $(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry of $(\mathrm{AB})^{\mathrm{T}}=\mathrm{d}_{\mathrm{ij}}=\sum_{t=1}^{n} A_{t}=\sum_{k=1}^{n} e_{k j} f_{i k} \quad\left[\mathrm{e}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} \& \mathrm{f}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}\right]$
$=\sum_{k=1}^{n} f_{i k} e_{k j}=\mathrm{g}_{\mathrm{ij}}=(\mathrm{i}, \mathrm{j})^{\mathrm{th}}$ entry of $\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$. Thus $(\mathrm{AB})^{\mathrm{T}} \neq \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$.
Theorem 1.4:
If A and B are $n \times n$ quaternion symmetric doubly stochastic matrices, then
(1) $1 / 2(A+B)$ is quaternion symmetric doubly stochastic matrix.
(2) (kA) is quaternion symmetric matrix, where K is scalar.
(3) $1 / 2(A B+B A)$ is quaternion symmetric doubly stochastic matrix.
(4) AB is quaternion symmetric doubly stochastic matrix if and only $\mathrm{AB} \neq \mathrm{BA}$.

Proof:
Since A and B are quaternion symmetric doubly stochastic matrices, so $A=A^{T}$ and $B=B^{T}$
(1) $1 / 2(A+B)^{T}=1 / 2\left(A^{T}+B^{T}\right)=1 / 2(A+B)$
$\Rightarrow 1 / 2(A+B)$ is quaternion symmetric doubly stochastic matrix [see Ex:1.1]
(2) $(k A)^{T}=K A^{T}=K A$, where K is scalar.
$\Rightarrow(\mathrm{kA})$ is quaternion symmetric matrix, where K is scalar.
(3) $1 / 2(A B+B A)^{\mathrm{T}}=1 / 2\left((\mathrm{AB})^{\mathrm{T}}+(\mathrm{BA})^{\mathrm{T}}\right)=$ $1 / 2\left(B^{T} A^{T}+A^{T} B^{T}\right)=1 / 2(B A+A B)$ $=1 / 2(A B+B A)$.
$\Rightarrow 1 / 2(A B+B A)$ is quaternion symmetric doubly stochastic matrix. ${ }^{6}$
(4) Suppose $A B$ is not quaternion symmetric doubly stochastic matrix, then $(A B)^{T}=A B$
(i.e,) $(A B)^{T}=A B \Rightarrow B^{T} A^{T}=A B \Rightarrow B A \neq A B$
$A B \neq B A$.
\Leftarrow Suppose $A B \neq B A$, then $(A B)^{T} \neq(B A)^{T}=A^{T} B^{T} \neq A B$ is not an quaternion Symmetric doubly stochastic matrix.
Property 1.3: If $\mathrm{A}, \mathrm{B} \in \mathrm{H}^{\mathrm{nxn}}$ then $(\mathrm{AB})^{\mathrm{n}} \neq \mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}$ for $\mathrm{n}>1$
Example 1.3:
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{B}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$
$\mathrm{AB}=\left(\begin{array}{ccc}3+k & -4-i-k & 2 \\ -16+6 i+7 j & 30+7 j & -12-5 i \\ 14+2 i & -20 & 11-i+j\end{array}\right)$
$A^{2}=\left(\begin{array}{ccc}-2 & 6 & 5 \\ 6 & 36 & 23 \\ 5 & 23 & 5\end{array}\right) \mathrm{B}^{2}=\left(\begin{array}{ccc}-4 & 6 & 5 \\ 6 & 8 & 3 \\ 5 & 3 & 1\end{array}\right)$
$\mathrm{AB}^{2}=\left(\begin{array}{ccc}8 & 18 & 4 \\ 171 & 851 & 169 \\ 194 & 400 & 121\end{array}\right)$
$A^{2} B^{2}=\left(\begin{array}{ccc}3 & 51 & 13 \\ 307 & 293 & 161 \\ 143 & 229 & 99\end{array}\right)$
$(A B)^{2} \neq A^{2} B^{2}$.
In general $(A B)^{n} \neq A^{n} B^{n}$.
Let as assume that this is true for $\mathrm{n}-1$
$(\mathrm{AB})^{n-1} \neq A^{n-1} B^{n-1}$
$(\mathrm{AB})^{n}=(A B)^{n-1}(A B)$
$\neq(A B)^{n-1}(B A)$
$\neq B^{n-1}\left(A^{n-1} B\right) A$
$\neq B^{n-1} B A^{n-1} A$
$\neq B^{n} A^{n}$
In general $(\mathrm{AB})^{n-1} \neq A^{n-1} B^{n-1}$ its true for $\mathrm{n}>1$
quaternion symmetric matrices does not satisfy commutative property.
Property 1.4:
If $A, B \in H^{n \times n}$ are quaternion symmetric doubly stochastic matrices then $A+B=2 c$ where C is another quaternion. Symmetric doubly stochastic matrix (or) The sum of symmetric doubly stochastic matrices of same order is twice the quaternion symmetric doubly stochastic matrix. (or) If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \ldots \mathrm{~A}_{\mathrm{n}} \in \mathrm{H}^{\mathrm{n} \mathrm{\times n}}$, then $\sum_{t=1}^{n} A_{t}$ is quaternion symmetric doubly stochastic matrices multiplied by ' n '
Proof:
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{B}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$
$\mathrm{A}+\mathrm{B}=\left(\begin{array}{ccc}2+3 i+3 j & 4-2 i-2 j & -4-i-j \\ 4-2 i-2 j & -9+j & 7+2 i+j \\ -4-i-j & 7+2 i+j & -2-i\end{array}\right)$
$\mathrm{A}+\mathrm{B}=\left(\begin{array}{ccc}1+\frac{3}{2} i+\frac{3}{2} j & 2-i-j & -2-i / 2-j / 2 \\ 2-i-j & -9 / 2+j / 2 & 7 / 2+i+j / 2 \\ -2-i / 2-j / 2 & 7 / 2+i+j / 2 & -1-i / 2\end{array}\right)$
$\mathrm{A}+\mathrm{B}=2 \mathrm{c}$
$\mathrm{C}=\left(\begin{array}{ccc}1+\frac{3}{2} i+\frac{3}{2} j & 2-i-j & -2-i / 2-j / 2 \\ 2-i-j & -9 / 2+j / 2 & \frac{7}{2}+i+j / 2 \\ -2-i / 2-j / 2 & \frac{7}{2}+i+j / 2 & -1-i / 2\end{array}\right)$
Theorem 1.5: If A is aquaternion symmetric doubly stochastic matrix, then $1 / 2\left(A+A^{T}\right)$ is quaternion symmetric doubly stochastic matrix ${ }^{6}$.

Poof:
$1 / 2\left[\left(A+A^{T}\right)\right]^{T}=1 / 2\left[A^{T}+\left(A^{T}\right)\right]^{T}=1 / 2\left[A^{T}+A\right]=\left[\left(A^{T}\right)^{T}=A\right]$
$\Rightarrow 1 / 2\left[A^{T}+A\right]$
Where $\left[\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}\right]$ is quaternion symmetric doubly stochastic matrix.
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\left(A^{T}\right)^{T}=A$
To prove $1 / 2\left(A+A^{T}\right)$ is quaternion (or) symmetric doubly stochastic matrix.
$1 / 2\left(A+A^{T}\right)^{T}$
$\left(\mathrm{A}+\mathrm{A}^{\mathrm{T}}\right)=\left(\begin{array}{ccc}2+2 i+4 j & 4-2 i-2 j & -4-2 j \\ 4-2 i-2 j & -12 & 10+2 i+2 j \\ -4-2 j & 10+2 i+2 j & -4-2 i\end{array}\right)$
$1 / 2\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\left(\mathrm{A}+\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}2+2 i+4 j & 4-2 i-2 j & -4-2 j \\ 4-2 i-2 j & -12 & 10+2 i+2 j \\ -4-2 j & 10+2 i+2 j & -4-2 i\end{array}\right)$
$1 / 2\left(A+\left(A^{T}\right)\right)^{T}$ is also an quaternion symmetric doubly stochastic matrix.
Property 1.5:
If $\mathrm{A} \in \mathrm{H}^{\mathrm{n} \mathrm{\times n}}$ is quaternion symmetric doubly stochastic matrix, then $1 / 2\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)=\mathrm{A}$
Proof:

$$
\begin{aligned}
& 1 / 2\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)=(2 \mathrm{~A}) / 2(\text { or })\left(2 \mathrm{~A}^{\mathrm{T}}\right) / 2 \\
& \text { Where } \mathrm{A}^{\mathrm{T}}=\mathrm{A} \\
& =\mathrm{A} \text { or } \mathrm{A}^{\mathrm{T}}
\end{aligned}
$$

Example 1.4:
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
1+i+2 j & 2-i-j & -2-j \\
2-i-j & -6 & 5+i+j \\
-2-j & 5+i+j & -2-i
\end{array}\right) \\
& \mathrm{A}^{2}+\mathrm{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
2+2 i+4 j & 2+i-2 j & -4-2 j \\
2+i-2 j & -12 & 10+2 i+2 j \\
-4-2 j & 10+2 i+2 j & -4-2 i
\end{array}\right) \\
&=2\left(\begin{array}{ccc}
1+i+2 j & 2-i-j & -2-j \\
2-i-j & -6 & 5+i+j \\
-2-j & 5+i+j & -2-i
\end{array}\right) \\
& 1 / 2\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)=2(\mathrm{~A}) / 2 \\
& 1 / 2\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)=\mathrm{A} . \text { Hence proved. }
\end{aligned}
$$

Property 1.6: If $\mathrm{A} \in \mathrm{H}^{\mathrm{n} \times \mathrm{n}}$ is quaternion symmetric doubly stochastic matrix then $\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right.$) is null matrix.
Proof:
If A is quaternion symmetric doubly stochastic matrix then $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$.
Hence $\left(A-A^{T}\right)=0$ if $A^{T}=A$.
$\mathrm{A}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$\mathrm{A}^{\mathrm{T}}=\left(\begin{array}{ccc}1+i+2 j & 2-i-j & -2-j \\ 2-i-j & -6 & 5+i+j \\ -2-j & 5+i+j & -2-i\end{array}\right)$
$A-A^{\mathrm{T}}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)$ is an null matrix. Hence proved.
Definition 1.2:
A square matrix A is said to be as quaternion orthogonal symmetric doubly stochastic matrix if $A A^{T}=A^{T} A=I$ Theorem:1.6

If A is quaternion orthogonal symmetric doubly stochastic matrix, then A^{T}
is also quaternion orthogonal symmetric doubly stochastic matrix.
Proof:
since A is quaternion orthogonal symmetric doubly stochastic matrix,
$A A A^{T}=A^{T} A=I$. therefore, $\left(A^{T}\right)^{T} A^{T}=A^{T}\left(A^{T}\right)^{T}$
$\mathrm{AA}^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{A}=\mathrm{I}$
$\Rightarrow \mathrm{A}^{\mathrm{T}}$ is quaternion orthogonal symmetric doubly stochastic matrix.
Example1.5:
$\mathrm{A}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

Property 1.7
In particular case of
$\mathrm{A}_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \mathrm{A}_{3}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ etc are doubly stochastic matrices then they are all quaternion orthogonal symmetric doubly stochastic matrices (i.e,) $A_{2}{ }^{2}=I_{2}$ and $A_{3}{ }^{2}=I_{3}$

Definition 1.3.

For any $\mathrm{B} \in \mathrm{H}^{\mathrm{nxn}}$ all doubly stochastic matrix is said to centro doubly stochastic matrix (or) centro bi stochastic matrix if $\mathrm{B}=\mathrm{Jn} \mathrm{B} \mathrm{Jn}$, where Jn is a exchange matrix.
Example 1.6 :
$\mathrm{B}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$
$J_{3}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
J_{3} В $_{3}=\left(\begin{array}{ccc}1+2 i+j & 2-i-j & -2-i \\ 2-i-j & -3+j & 2+i \\ -2-i & 2+i & 1\end{array}\right)$

References

1. Hazewinkel, Mickiel, ed, Symmetric matrix, Encyclopedia of Mathematics, Springer, ISBN 978-I -55608-010-4 (2001).
2. Hill, R.D. and Waters, S.R., on K - real and K - Hermitiam matrices, Lin. Alg. Appl., 169, 17-29 (1992).
3. Krishnamoorthy, S., Gunasekaran. K and Mohana. N characterization and Theorems on Doubly stochastic matrices.
4. Latouche. G., Ramaswami. V, Introduction to matrix Analytic methods in Stochastic modeling, $1^{\text {st }}$ edition. Chapter 2: PH Distributions; ASA SIAM, (1999).
5. Medhi. J "stochastic process", $2^{\text {nd }}$ edition. Second edition new age international (p) Ltd. Publishers (1982).
6. L. Huang, "on two question about quaternion matrices", lin. Alg. Appl-318, 79-86 (2000).
