
  Multi-Objective Welded Beam Optimization using Neutrosophic Optimization
Technique: A Comparative Study

1MRIDULA  SARKAR*,  2SWARUP  GHOSH  and  1TAPAN  KUMAR ROY

1,1Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur.
P.O.-Botanic Garden, Howrah-711103, West Bengal (India)

2Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur.
P.O.-Botanic Garden, Howrah-711103, West Bengal, India.

Corresponding Author Email: mridula.sarkar86@rediffmail.com
http://dx.doi.org/10.22147/jusps-A/290703

Acceptance Date 30th May,  2017,          Online Publication Date 2nd July, 2017

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES
An International Open Free Access Peer Reviewed Research Journal of Mathematics

website:- www.ultrascientist.org

JUSPS-A  Vol. 29(6), 243-263   (2017).  Periodicity-Monthly

Section A

Estd. 1989

(Print) (Online)

Abstract

This paper investigates multi–objective Neutrosophic Optimization (NSO) approach to optimize the
cost of welding and deflection at the tip of a welded steel beam, while the maximum shear stress in the weld
group, maximum bending stress in the beam, and buckling load of the beam have been considered as constraints.
The problem of designing an optimal welded beam consists of dimensioning a welded steel beam and the
welding length so as to minimize its cost, subject to the constraints as stated above. The purpose of the present
study firstly to investigate the effect of truth, indeterminacy and falsity membership function in neutrosophic
optimization in perspective of welded beam design and secondly is to analyse the results obtained by different
optimization  methods like fuzzy, intuitionistic fuzzy so that the welding cost of the welded steel beam become
most cost effective with minimum deflection. Specifically based on truth, indeterminacy and falsity membership
function, a multi objective NSO algorithm has been developed to optimize the welding cost, subjected to a set
of constraints. It has been shown that NSO is an efficient method in finding out the optimum value in comparison
to other iterative methods for nonlinear welded beam design in imprecise environment till investigated. Numerical
example is also given to demonstrate the efficiency of the proposed NSO approach.

Key words: Neutrosophic Set, Single Valued Neutrosophic Set, Neutrosophic Optimization, Multi-
Objective welded beam optimization.

Subject classification code:90C30,90C70,90C90
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1. Introduction

Welding, a process of joining metallic parts with the application of heat or pressure or the both, with
or without added material, is an economical and efficient method for obtaining permanent joints in the metallic
parts. This welded joints are generally used as a substitute for riveted joint or can be used as an alternative
method for casting or forging. The welding processes can broadly be classified into following two groups, the
welding process that uses heat alone to join two metallic parts and the welding process that uses a combination
of heat and pressure for joining (Bhandari. V. B). However, above all the design of welded beam should preferably
be economical and durable one. Since decades, deterministic optimization has been widely used in practice for
optimizing welded connection design. These include mathematical optimization algorithms (Ragsdell & Phillips
1976) such as APPROX (Griffith & Stewart’s) successive linear approximation, DAVID (Davidon Fletcher Powell
with a penalty function), SIMPLEX (Simplex method with a penalty function), and RANDOM (Richardson’s
random method) algorithms, GA-based methods2,4,16,17 particle swarm optimization3, harmony search method5,
and Big-Bang Big-Crunch (BB-BC) (O. Hasançebi, 2011) algorithm. SOPT 7, subset simulation (Li 2010), improved
harmony search algorithm8, were other methods used to solve this problem. Recently a robust and reliable  H”
static output feedback (SOF) control for nonlinear systems13 and for continuous-time nonlinear stochastic
systems13 with actuator fault in a descriptor system framework have been studied. All these deterministic
optimizations aim to search the optimum solution under given constraints without consideration of uncertainties.
So, while a deterministic optimization approach is unable to handle structural performances such as imprecise
stresses and deflection etc. due to the presence of uncertainties, to get rid of such problem fuzzy1, intuitionistic
fuzzy9, Neutrosophic10 play great roles.

Traditionally structural design optimization is a well known concept and in many situations it is treated
as single objective form, where the objective is known the weight or cost  function. The extension of this is the
optimization where one or more constraints are simultaneously satisfied next to the minimization of the weight
or cost function. This does not always hold good in real world problems where multiple and conflicting objectives
frequently exist. In this consequence a methodology known as multi-objective optimization (MOSO) is introduced

So to deal with different impreciseness such as stresses and deflection with multiple objective, we
have been motivated to incorporate the concept of neutrosophic set in this problem, and have developed multi-
objective neutrosophic optimization algorithm to optimize the optimum design.

Usually Intuitionistic fuzzy set, which is the generalization of fuzzy sets, considers both truth membership
and falsity membership that can handle incomplete information excluding the indeterminate and inconsistent
information while neutrosophic set can quantify indeterminacy explicitly by defining  truth, indeterminacy and
falsity membership function independently. Therefore, Wang et.al. (2010) presented such set as single valued
neutrosophic set (SVNS) as it comprised of generalized classic set, fuzzy set, interval valued fuzzy set,
intuitionistic fuzzy set and Para-consistent set.

As application of SVNS optimization method is rare in welded beam design, hence it is used to minimize
the cost of welding by considering shear stress, bending stress in the beam, the buckling load on the bar, the
deflection of the beam as constraints. Therefore the result has been compared among three cited methods in
each of which impreciseness has been considered completely in different way.

Moreover using above cited concept, a multi-objective neutrosophic optimization algorithm has been
developed to optimize three bar truss design14, and to optimize riser design problem15.

However, the factors governing of former constraints are height and length of the welded beam, forces
on the beam, moment of load about the centre of gravity of the weld group, polar moment of inertia of the weld
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group respectively. While, the second constraint considers forces on the beam, length and size of the weld,
depth and width of the welded beam respectively.  Third constraint includes height and width of the welded
beam. Fourth constraints consists of height, length, depth and width of the welded beam. Lastly fifth constraint
includes height of the welded beam. Besides, flexibility has been given in shear stress, bending stress and
deflection only, hence all these parameters become imprecise in nature so that it can be considered as neutrosophic
set to from truth, indeterminacy and falsity membership functions Ultimately, neutrosophic optimization technique
has been applied on the basis of the cited membership functions and outcome of such process provides the
minimum cost of welding ,minimum deflection for nonlinear welded beam design. The comparison of results
shows difference between the optimum value when partially unknown information is fully considered or not.

2. Multi-Objective Structural Model
In sizing optimization problems, the aim is to minimize multi objective function, usually the cost of the

structure, deflection  under certain behavioural constraints which are displacement or stresses. The design
variables are most frequently chosen to be dimensions of the height, length, depth and width of the structures.
Due to fabrications limitations the design variables are not continuous but discrete for belongingness to a
certain set. A discrete structural optimization problem can be formulated in the following form

( )Minimize C X                                                                                                                    (1)

 Minimize X

    , 1, 2,.....,i isubject to X X i m    

, 1,2,.....,d
jX R j n 

where ( ),C X  X  and  i X as represent cost function, deflection and the behavioural constraints

respectively whereas  i X    denotes the maximum allowable value , ‘m’ and ‘n’ are the number of constraints

and design variables respectively. A given set of discrete value is expressed by dR and in this paper objective
functions are  taken as

 
1 1

mT
tn

t n
t n

C X c x
 

   and  X

and constraint are chosen to be stress of structures as follows

 i iA 


 with allowable tolerance 0
i for 1,2,....,i m

Where tc is the cost coefficient of tth term and nx  is the  thn design variable respectively,,
 m  is the number of

structural element, i  and 0
i  are the thi  stress, allowable stress respectively..

3.  Mathematical preliminaries

3.1. Fuzzy Set

Let X be a fixed set. A fuzzy set A  of  X  is an object having the form    , :AA x T x x X 
 where



the function  : 0,1AT X   defined the truth membership of the element x X to the set A .

3.2.    Intuitionistic Fuzzy  Set

Let a set X be fixed. An intuitionistic fuzzy set or IFS iA  in X  is an object of the form

    , ,i i
i

A A
A X T x F x x X    
 where  : 0,1iA

T X  and  : 0,1iA
F X   define the truth

membership and falsity membership respectively, for every element of    , 0 1i iA A
x X T x F x     .

3.3.    Neutrosophic Set

Let a set be a space of points (objects) and   x X . A neutrosophic set  nA  in X is defined by a truth

membership function   nAT x , an indeterminacy-membership function   nAI x   and a falsity membership

function   nAF x  and having the form        , , ,n n n
n

A A A
A x T x I x F x x X     
 .     ,nAT x

  nAI x  and   nAF x  are real standard or non-standard subsets of  ]0 ,1 [  . That is

   : ]0 ,1 [nAT x X  

   : ]0 ,1 [nAI x X  

   : ]0 ,1 [nAF x X  

There is no restriction on the sum of    ,nAT x    nAI x  and   nAF x  so

      0 sup sup sup 3n n nA A AT x I x F x       .

3.4.    Single Valued Neutrosophic Set

Let a set X be the universe of discourse. A single valued neutrosophic set  nA over  X is an object

having the form        , , ,n n n
n

A A AA x T x I x F x x X     
   where     : 0,1 , : 0,1n nA A

T X I X  

and   : 0,1nAF X   are  truth, indeterminacy and falsity membership functions respectively such that

      0 3n n nA A AT x I x F x       for all  x X .

3.5.    Complement of Neutrosophic Set

Complement of a single valued neutrosophic set  n
A  is denoted by 

  nC A  and its truth, indeterminacy

and falsity membership functions are denoted by  
       : 0,1 , : 0,1n nC A C A

T X I X  
 and
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   : 0,1nC A

F X   where 
 

      ,nn AC A
T x F x   

 
     1 ,nn AC A

I x F x    
 

     nn AC A
F x T x 

3.6 Union of Neutrosophic Sets

The union of two single valued neutrosophic sets  nA  and  nB  is a single valued neutrosophic set

 nU  denoted by

        , , ,n n n
n n n

U U U
U A B x T x I x F x x X    

 

and is defined by the following conditions

(i)        max , ,n n nU A B
T x T x T x  

(ii)        max , ,n n nU A BI x I x I x  

(iii)        min ,n n nU A BF x F x F x    for all  x X  for Type-I

Or in another way by defining following conditions

(i)        max , ,n n nU A BT x T x T x  

(ii)        min ,n n nU A BI x I x I x  

(iii)        min ,n n nU A BF x F x F x    for all  x X   for Type-II

where    ,nU
T x    ,nU

I x   nU
F x   represent truth membership, indeterminacy-membership and falsity-

membership functions of union of neutrosophic sets

3.7.   Intersection of  Neutrosophic Sets

The intersection of two single valued neutrosophic sets  nA  and  nB  is a single valued neutrosophic

set   nE  is denoted  by

        , , ,n n n
n n

E E E
E A B x T x I x F x x X    

 

and is defined by the following conditions

(i)        min , ,n n nE A BT x T x T x  

(ii)        min , ,n n nE A BI x I x I x  

(iii)        max ,n n nE A BF x F x F x    for all  x X  for Type-I

Or  in another way by defining following conditions

(i)        min , ,n n nE A BT x T x T x  
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(ii)        max ,n n nE A BI x I x I x  

(iii)        max ,n n nE A BF x F x F x    for all  x X  for Type-II

where    ,nE
T x    ,nE

I x   nE
F x    represent truth membership, indeterminacy-membership and falsity-

membership functions of union of neutrosophic sets

4. Mathematical Analysis
4.1. Neutrosophic Optimization Technique to Solve Minimization Type Multi-Objective Nonlinear
Programming Problem

Decision making is nothing but a process of solving the problem that achieves goals under constraints.
The outcome  of the problem is a decision which should in an action. Decision making plays an important role
in different subject such as field of economic and business, management sciences, engineering and manufacturing,
social and political science, biology and medicine, military, computer science etc. It faces difficulty in prgress
due to factors like incomplete and imprecise information which often present in real life situations. In the
decision making process, the decision maker’s  main target is to find the value from the selected set with the
highest degree of membership in the decision set and these values support the goals under constraints only.
But there may be situations arise where some values from selected set cannot support, rather such values
strongly against the goals under constraints which are non-admissible. In this case we find such values from
the selected set with last degree of non-membership in the decision sets. Intuitionistic fuzzy sets can only
handle incomplete information not the indeterminate information and inconsistent information which exists
commonly belief in system. In neutrosophic set, indeterminacy is quantified explicitly and truth-membership,
indeterminacy-membership, falsity-membership are independent to each other. So it is natural to adopt for that
purpose the value from the selected set with highest degree of truth-membership, highest degree or leasts
degree of  indeterminacy-membership and least degree of falsity-membership on the decision set. These factors
indicate that a decision making process takes place in neutrosophic environment.

Computational algorithm
Step-1: Solve the MONLP problem (2) as a single objective non-linear problem p times for each problem by
taking one of the objectives at a time and ignoring the others. These solution are known as ideal solutions. Let
 kx  be the respective optimal solution for the  thk  different objective and evaluate each objective values for all

these  thk  optimal solution.
Step-2: From the result of step-1, determine the corresponding values for every objective for each derived
solution, pay-off matrix can be formulated as follows

      
     

     

* 1 1 1
1 2

2 * 2 2
1 2

*
1 2

......

........

...... ....... ........ .......

........

p

p

p p p
p

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
  

Step-3: For each objective   kf x  find lower bound  kL  and the upper bound  kU 
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   
  

*

*

max

min 1, 2,....,

T r
k k

T r
k k

U f x and

L f x where r k



 

For truth membership of objectives.
Step-4: We represent upper and lower bounds for indeterminacy and falsity membership of objectives as
follows :

 

 
 

1, 2,......

;F T F T T T
k k k k k k

I T I T T T
k k k k k k

for k p

U U and L L t U L

L L and U L s U L



   

   

Here  ,t s  are predetermined real numbers in   0,1
Step-5: Define truth membership, indeterminacy membership and falsity membership functions as follows
 1,2,.......,for k p

 

    

   

   
   

     

   

1

1 exp

0

k

k

k k k

k k

k

T
k f x

T
kf x T T

k kf x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U



 

                 




 

    

   

   
   

     

   

1

exp

0

k

k k k

k k

k

I
k f x

I
kf x I I

k kf x f x f xI I
f x f x

I
k f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

           
 

 

    

   

     
       

   

0

1 1 tanh
2 2 2

1

F
f x

F F
f x f x F F

f x f x f x f x

F
f x

if f x L

U L
F f x f x if L f x U

if f x U



 

                 
 
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Step-6:Now neutrosophic optimization method for MONLP problem gives a equivalent nonlinear programming
problem as:

  Maximize      (2)

 such that

   ;k kT f x     ;k kI f x     ;k kF f x 

3;     ; ;      , , 0,1 ;     

  0,j jg x b x 
 

1,2,..., ;k p 1, 2,...,j m  

which is reduced to equivalent non linear programming problem as

  Maximize      (3)

 such that

 
   

;
4

T T
k k T

k k

U L
f x L

 
 

  ;
2

k

k

T T
k k f

k
f

U L
f x




 
    ; 1, 2,....,

k k

T
k f k ff x L for k p      

    1 6log 1 , log , tanh 2 1 , 4,
kf F F

k k

where
U L

               


3;     ; ;      , , 0,1 ;     ;j jg x b 0,x   

This crisp nonlinear programming problem can be solved by appropriate mathematical algorithm.

5. Solution of Multi-objective Structural Optimization Problem (MOSOP) by Neutrosophic Optimization
Technique

To solve the MOSOP (1), step 1 of 4.1 is used .After that according to step to pay off matrix is
formulated.

    
   
   

* 1 11

2 2 * 2

C X X

C X XX
X C X X







 
 
 
 

According to step-2 the bound of weight objective     , ;T T
C X C XU L   

   ,I I
C X C XU L  and   

   ,F F
C X C XU L  for truth,
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indeterminacy and falsity membership function respectively. Then

 
                 ; ;T T I I F F

C X C X C X C X C X C XL C X U L C X U L C X U      .  Similarly the bound of

deflection  objective  are  
           , ; , ,T T I I F F
X X X X X XU L U L and U L       are respectively for truth,

indeterminacy  and falsity membership function. Then

 
                 ; ;T T I I F F
X X X X X XL X U L X U L X U             . Where

 
                   , ; ,F T F T I T I T

C X C X C X C X C X C X C X C X C X C XU U L L L L U L      

and                     , ; ,F T F T I T I T
X X X X X X X X X XU U L L L L U L                 such that

 
      0 T T

C X C X C XU L    and  
 

      0 T T
X X XU L     .

Therefore the truth, indeterminacy and falsity membership functions for objectives are

 
    

   

   
   

     

   

1

1 exp

0

C X

T
C X

T
C X T T

C X C XT T
C X C X

T
C X

T C X

if C X L

U C X
if L C X U

U L

if C X U





 

                




 
    

   

      
 

       

     

1

exp

0

C X

T
C X

T
C X C X T T

C X C X C X
C X

T
C X C X

I C X

if C X L

L C X
if L C X L

if C X L










 

          
   

 

 
    

     

        
         

   

0

1 1 tanh
2 2 2

1

C X

T
C X C X

T T
C X C X C X T T

C X C X C X C X

T
C X

F C X

if C X L

U L
C X if L C X U

if C X U




 



  

                  


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        0 , T T

C X C X C X C Xwhere U L   

and

 

    

   

   
   

     

   

1

1 exp

0

T
X

T
X T T

X X XT T
X X

T
X

if X L

U X
T X if L X U

U L

if X U




  

 






  



 

                 




 

    

 

      
 

       

     

1

exp

0

T

T
X X T T

X X X X
X

T
X X

if X L

L X
I X if L X L

if X L



 

   


 



 
  



 

 


          
   

 

 

    

     

        
         

   

0

1 1 tanh
2 2 2

1

T
X X

T T
X X X T T

X X X X X

T
X

if X L

U L
F X X if L X U

if X U

 

  

    



 


    



  

                   



where  ,   are non-zero parameters prescribed by the decision maker and for

 
        0 , T T
X X X Xwhere U L      

 According to neutrosophic optimization technique considering truth, indeterminacy and falsity membership
function for MOSOP (1), crisp non-linear programming problem can be formulated as

  Maximize      (4)

 Subject to

     ;C XT C X        ;XT X  

     ;C XI C X       ;XI X  

     ;C XF C X        ;XF X    
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     ;i iX X    
3;     ;  ;   

   min max, , 0,1 , X X X     
which is reduced to equivalent non linear programming problem as

  Maximize      (5)

Such that

 

      
  ;

T T
C X C X T

C X

U L
C X U




 

 
 

 

      ;
2

T T
C X C X C X

C X

U L
C X




 
 

         ;
T

C X C X C XC X L   

 

      
 ;

T T
X X T

X

U L
X U

 

 



 

        ;
T

X X XX L      

 
 

 

      ;
2

T T
X X X

X

U L
X   








 
 

     ;i iX X    
 3;    

  ; ;    

 , , 0,1   min maxX X X 

where   ln 1 ;      4;   

 
 

    
6 ;C X F F

C X C XU L
 

  

 
 

    
6 ;X F F

X XU L


 

 
   ln ; 

  1tanh 2 1 .   
Solving the above crisp model (5) by an appropriate mathematical programming algorithm we get

optimal solution and hence objective functions i.e structural weight and deflection of the loaded joint will attain
Pareto optimal solution.
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6. Numerical Illustration
A welded beam (Ragsdell and Philips 1976, Fig. 1) has to be designed at minimum cost whose constraints

are shear stress in weld     ,  bending stress in the beam     , buckling load on the bar   P , and deflection

of the beam    . The design variables are 

 1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

 where h  is the the weld size, l  is the length of the weld

t, is the depth of the welded beam, b is the width of the welded beam.

Fig. 1.  Design of the welded beam

Cost Function
The performance index appropriate to this design is the cost of weld assembly. The major cost

components of such an assembly are (i) set up labour cost, (ii) welding labour cost, (iii) material cost.
   0 1 2C X C C C   where,   f X   cost function;

 
 0C   set up cost;

 
 1C   welding labour cost;

 
  2C 

material cost;

Set up cost  0C :  The company has chosen to make this component a weldment, because of the existence of a
welding assembly line. Furthermore, assume that fixtures for set up and holding of the bar during welding are

readily available. The cost  0C  can therefore be ignored in this particular total cost model.

Welding labour cost  1C : Assume that the welding will be done by machine at a total cost of $10/hr (including
operating and maintenance expense). Furthermore suppose that the machine can lay down a cubic inch of weld
in 6 min. The labour cost is then

 
1 3 3

$ 1 $ min $10 6 1
60 min w wC V V

hr in in
               
       

. Where  wV   weld volume, in3
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Material cost  2C  :   2 3 4w BC C V C V  . Where  3C   cost per volume per weld material. $/in3

 (0.37)(0.283) ;
 
  4C  cost per volume of bar stock. $/in3  (0.37)(0.283) ;

 
 BV   volume of  bar, in, in3.

From geometry   2
wV h l ;  volume of the weld material (in3)

 
 2

1 2weldV x x  and    BV tb L l  ;  volume of

bar  (in3)
 

  3 4 2barV x x L x  .  Therefore cost function become

      2 2 2
3 4 1 2 3 4 21.10471 0.04811 14.0C X h l C h l C tb L l x x x x x      

Engineering Relationship

Fig 2. Shear stresses in the weld group.

Maximum shear stress in weld group:
To complete the model it is necessary to define important stress states

Direct or primary shear stress 
 

1
1 22 2

Load P P P
Throat area A hl x x

    

Since the shear stress produced due to turning moment  .M P e   at any section is proportional to its radial
distance from centre of gravity of the joint ‘G’, therefore stress due to M is proportional to R and is in a direction

at right angles to  R. In other words  
 2

R r
 

   constant. Therefore 
 2 2

2 2 4 4
l h tR          

   
 

 22 2 2
1 32

2 2 4 4
x xxl h t          

   

Where,  2  is the shear stress at the maximum distance R and  is the shear stress at any distance r. Consider

a small section of the weld having area dA at a distance r from ‘G’. Therefore shear force on this small section

 dA   and turning moment of the shear force about centre of gravity  
 22dM dA r dA r

R
      .

Therefore total turning moment over the whole weld area 
 22 2 .M dA r J

R R
 

    where  J = polar
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moment of inertia of the weld group about centre of gravity. Therefore shear stress due to the turning moment

i.e. secondary shear stress, 
 

2
MR
J

  . In order to find the resultant stress, the primary and secondary shear

stresses are combined vectorially. Therefore the maximum resultant shear stress that will be produced at the

weld group,  2 2
1 2 1 22 cos        , where,     Angle between 1 and 2. As 

 22cos ;
2
xl

R R
  

 
2 2 2
1 2 1 22

2
x
R

       .

Now the polar moment of inertia of the throat area   A  about the centre of gravity is obtained by parallel axis

theorem,

  222 2
1 32 2 2 2

1 22 2 2 2 2
12 12 12 2xx

x xxA l lJ I A x A x A x x x
                      

        

Where, A = throat area  1 22x x ,
 
 l = Length of the weld,

 
x = Perpendicular distance between two parallel

axes 
 1 3

2 2 2
x xt h 

   .

Maximum bending stress in beam:

Now Maximum bending moment = PL, Maximum bending stress 
 T

Z
 , where  ;T PL

Z = section modulus 
 

;I
y

  I = moment  of inertia 
 3

;
12
bt

  y = distance of extreme fibre from centre of gravity

of cross section 
 

;
2
t

  Therefore 
 2

6
btZ  . So bar bending stress 

 
  2 2

4 3

6 6 .T PL PLx
Z bt x x

   

Maximum deflection in beam:

Maximum deflection at cantilever tip 
 3 3 3

3 3

4
3 3

12

PL PL PL
btEI EbtE

  

Buckling load of beam:

buckling load can be approximated by 
 

  2

4.013 1C
EIC a ElP x

l l C
 

   
 
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where, I = moment of inertia 
 3

;
12
bt

  torsional rigidity 
 31 ; ; ;

3 2
tC GJ tb G l L a   

 2 6

2

4.013
36 1

2 4

t bE t E
L L G

 
   

 
  

 6 6
3 4 3

2

4.013 / 36
1 ;

2 4
EGx x x E
L L G

 
   

 

The single-objective optimization problem can be stated as follows
    2

1 2 2 3 41.10471 0.04811 14Minimize g x x x x x x   (6)

 
 

3

2
4 3

4 ;PLMinimize x
Ex x

 

Such that

    1 max 0;g x x   

    2 max 0;g x x   

  3 1 4 0;g x x x  

    2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x    

  5 10.125 0;g x x  

    6 max 0;g x x   

    7 0;Cg x P P x  

 
1 40.1 , 2.0x x 

 
2 30.1 , 2.0x x 

where   
 
  2 22

1 1 2 22
2
xx
R

        ;   
 

1
1 22

P
x x

  ;  
 

2
MR
J

   ;    
 

2

2
xM P L   

 
;

 22
1 32

4 2
x xxR     

 
; 

 22
1 31 2 2 ;

12 22
x xx x xJ

        
     

 
   2

4 3

6 ;PLx
x x

   
 
 

3

2
4 3

4 ;PLx
Ex x

 

 
 

6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

 
P  Force  on beam ; L Beam length beyond weld; 1x 

Height of the welded beam; 2x   Length  of the welded beam; 3x   Depth of the welded beam; 4x   Width
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of the welded beam;  x  Design shear stress;  x  Design normal stress for beam material; M 

Moment of P  about the centre of gravity of the weld , J  Polar moment of inertia of weld group; G 
Shearing modulus of Beam Material; E   Young modulus; max   Design Stress of the weld; max 

Design normal stress for the beam material; max   Maximum deflection; 1   Primary stress on weld throat.

2  Secondary torsional stress on weld. Input data are given in table 1.

Table 1. Input data for crisp model (6)
Applied load Beam length Young Value of Maximum Maximum

P beyond weld Modulus G allowable allowable
(lb) L E (psi) shear normal

(in) (psi) stress  max stress  max
(psi) (psi)
13600 30000
with with

6000 14  63 10  612 10 fuzzy fuzzy
region region

50 50

Solution: : According to step 2 of 4.1  pay-off matrix is formulated as follows

         

    
1

2

7.700387 0.2451363
11.91672 0.1372000

C X X

X
X



 
 
 

Here

        1 111.91672, 7.700387 ;F T F T
C X C X C X C XU U L L       

        1 17.700387, 7.700387I T I T
C X C X C X C XL L U L       

such that  1 10 , 11.91672 7.700387    ;

        2 20.2451363, .1372000 ;F T F T
X X X XU U L L          

        2 20.1372000, 0.1372000I T I T
X X X XL L U L          

such that  2 20 , 0.2451363 0.1372000   

Here truth, indeterminacy, and falsity membership function for objective functions    ,C X X are defined
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as follows

 
    

 
   

 

1 7.700387

11.91672
1 exp 4 7.700387 11.91672

4.216333

0 11.91672

C XT C X

if C X

C X
if C X

if C X



 


          
    

 

 
    

 
     

 

1
1

1

1

1 7.700387

7.700387
exp 7.700387 7.700387

0 7.700387

C XI C X

if C X

C X
if C X

if C X










 


       
 

  

 
    

 

     

 

1

1

0 7.700387

19.6171071 1 6tanh 7.700387 11.91672
2 2 2 4.216333

1 11.91672

C XF C X

if C X

C X if C X

if C X






 


               
 

 
1 10 , 4.216333  

and

 
    

 
   

 

1 0.1372000

0.2451363
1 exp 4 0.1372000 0.2451363

0.1079363

0 0.2451363

XT X

if X

X
if X

if X

 










 


          
    

 

 
    

 
     

 

2
2

2

2

1 0.1372000

0.1372000
exp 0.1372000 0.1372000

0 0.1372000

XI X

if X

X
if X

if X

 



 
 



 



 


       
 

  
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    

 

   

 

2

2
2

2

0 0.1079363

0.38233631 1 6tanh 0.1079363 0.2451363
2 2 2 0.1079363

1 0.2451363

XF X

if X

X if X

if X

 

 

  






  


             
 

 
2 20 , 0.1079363  

According to neutrosophic optimization technique the MOSOP (6) can be formulated as

 Maximize    
                                                                                                               (7)

  2
1 2 2 3 4

4.2163331.10471 0.04811 14 11.91672;
4

x x x x x    

 
     1 12

1 2 2 3 4

4.216333 19.617107
1.10471 0.04811 14 ;

6 2
x x x x x

   
   

    2
1 2 2 3 4 1 11.10471 0.04811 14 7.700387 ;x x x x x      

 3

2
4 3

4 0.1079363 0.2451363;
4

PL
Ex x

 

    3
2 2

2
4 3

0.1079363 0.38233634 ;
6 2

PL
Ex x

   
 

 
 

3

2 22
4 3

4 0.1372000 ;PL
Ex x

   

    1 max 0;g x x   
    2 max 0;g x x   
  3 1 4 0;g x x x  

    2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x    

  5 10.125 0;g x x  

    6 max 0;g x x   

    7 0;Cg x P P x  
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1 40.1 , 2.0x x 

 
2 30.1 , 2.0x x 

 3; ;          

 ln 1 ;    4;   
    

6 ;C X F F
C X C XU L

 
  

    
6 ;X F F

X XU L

 

 


ln ;   

  1tanh 2 1 .   

  2 22
1 1 2 22

2
xx
R

        ; 1
1 22

P
x x

  ; 2
MR
J

  ; 2

2
xM P L   

 
;

22
1 32

4 2
x xxR     

 
; 

 22
1 31 2 2 ;

12 22
x xx x xJ

        
     

 
   2

4 3

6 ;PLx
x x

   
 
 

3

2
4 3

4 ;PLx
Ex x

 

 

 
 

6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

 
Now, using above mentioned  truth, indeterminacy and falsity membership function NLP (6) can be solved by

NSO technique for different values of    ,g x x  and    ,g x x  . The optimum solution of  MOSOP(6) is
given in Table 2.

Table 2. Comparison of Optimal solution of MOSOP (6) based on different methods

Methods
 
 

1x
inch

 
 

2x
inch

 
 

3x
inch

 
 

4x
inch   C X   X

Fuzzy single-objective non-  1.298580  0.9727729  1.692776  1.298580  3.395620  0.2456363
linear programming (FSONLP)

Intuitionistic Fuzzy single-  1.298580  0.9727730  1.692776  1.298580  3.395620  0.2352203
objective non-linear

programming (FSONLP)

Neutosophic  1.957009  1.240976 2  1.957009  8.120387  0.1402140
optimization(NSO)

   0.42,g x      0.42,g x 

   0.01,x      0.01,x 
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A detailed comparison has been made among the minimum length, depth, height and width of the
weld,welding cost and deflection Also the results have been  compared among fuzzy, intuitionistic, neutrosophic
optimization technique in perspective of welded beam design in Table 2. It has been observed that Intuitionistic
fuzzy nonlinear optimization provides better result in comparison with other mentioned method in this study.
However, it may also be noted that the efficiency of the proposed method depends on the model chosen to a
greater extent. In the present study it has also been investigated that cost of welding is maximum and deflection
is minimum in neutrosophic optimization technique compared to the other method investigated.

7.  Conclusions

In this paper, a multi objective neutrosophic optimization algorithm has been developed by defining
truth, indeterminacy and falsity membership function which are independent to each other. It has been shown
that the developed algorithm can be applied to optimize a multi objective nonlinear structural design. Simulation
example, i.e. welded beam design has been provided to illustrate the optimization procedure, effectiveness and
advantages of the proposed neutrosophic optimization method. The extension of the proposed optimization
can be neutrosophic optimization using ranking method of neutrosophic fuzzy numbers ,considered for height,
length, depth and width of weld and applied load as further topics of interest.
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