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Abstract

 In this paper, we introduce a fixed point theorem in generalized form for continuous contracting
mappings in dislocated quasi-metric space. Our result generalizes and extends the work of Manoj6, Isufati5 and
then show that the result of Zeyada4 is special case of our theorem.
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1 Introduction

The Banach contraction principle is a remarkable result in metric fixed point theory. Over the years, it
has been generalized in different directions and spaces by several mathematicians. It has many applications in
various branches of mathematics such as differential equation, integral equation etc.  The existence of a fixed
point is therefore of paramount importance in several area of mathematics. Manoj6, Isufati5 and Zeyada4  have
extended, generalized and improved Banach fixed point theorem in different ways.

The aim of this paper is to obtain a fixed point theorem in the generalized form for continuous contracting
mappings in dislocated quasi-metric space.

2 Preliminaries:
Definition 2.14 Let X be a non empty set and let d : X × X  [0, ) be a function satisfying following

conditions:
(i) d(x, y) = d (y, x) = 0, implies x = y,
(ii) d(x, y)  d (x, z) + d(z, y), for all x, y, z  X.

Then d is called a dislocated quasi-metric on X. If d satisfies d(x, y) = d (y, x), then it is called dislocated
metric.
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Definition 2.24  A sequence {xn} in dq-metric space (dislocated quasi-metric space) (X, d) is called
Cauchy sequence if  for, given ε > 0, there exist n0  N, such that  m, n  n0, implies d(xm, xn) < ε or d(xn, xm) <
ε i.e. min {d(xm, xn), d(xn, xm)} < ε.

Definition 2.34   A sequence {xn} dislocated quasi-convergent to x if
limn d(xn, x) = limn d(x, xn)  =  0

In this case x is called a dq-limit of {xn} and we write xn  x.
Definition 2.44  A dq-metric space (X, d) is called complete if every Cauchy sequence in it is a dq-

convergent.
Definition 2.54  Let (X, d) be a dq-metric space. A map T : X  X is called contraction if there exists

0  λ  1 such that
                             d(Tx, Ty)  λ d(x, y), for all x,y  X.

3 Main results
Theorem 3.1 Let (X, d) be a complete dq-metric space and let T : X  X be a continuous mapping

satisfying the following conditions

 d(Tx, Ty)  
)y,x(d1

)]Ty,x(d1)[Ty,y(d



  + β d(x,y) + γ d(x, Tx) + δ d(y, Tx)

for all x,y  X, α > 0, β > 0, γ > 0, δ > 0, α + β + γ + δ < 1. Then T has a unique fixed point.
Proof :  Let xo   X and define a sequence {xn} in X such that

                         T(x0) = x1, T(x1) = x2 ............, T(xn) = xn+1.............
Consider, d(xn, xn+1) = d(Txn-1, Txn)
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  + β d(xn-1,xn) + γ d(xn-1, Txn-1) + δ d(Txn, Txn-1)
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  + β d(xn-1,xn) + γ d(xn-1, xn) + δ d(xn+1, xn)

Therefore, d(xn, xn+1)   



1  d(xn-1, xn)

                                      = λ d(xn-1, xn)

Where λ = 



1  with 0  λ < 1. In a similar way we will show that

                  d(xn-1, xn)  λ d(xn-2, xn-1)
 and           d(xn, xn+1)  λ2 d(xn-2, xn-1)
Thus          d(xn, xn+1)  λn d(x1, x0)
Since 0  λ < 1, as n , λn  0. Hence {xn} is a dq-cauchy sequence in X. Thus {xn} dislocated quasi-
convergences to some t0. Since T is continuous, we have
                   T(t0) = lim T(xn) = lim xn+1 = t0.
Thus T(t0) = t0. Hence T has a fixed point.



Uniqueness: Let x be a fixed point of T. Then by given condition, we have
                   d(x, x)  d(Tx, Tx)

                          
)x,x(d1

)]Tx,x(d1)[Tx,x(d



  + β d(x, x) + γ d(x,Tx) + δ d(x, Tx)

                                  (α + β + γ + δ) d(x, x). Which gives d(x, x) = 0, since 0  α + β + γ + δ < 1 and d(x, x)  0. Thus
d(x, x)  0,  if x is fixed point of T.
Let x, y  X be fixed points of T, i.e. Tx = x, Ty = y.
Then by given condition,
                   d(x, y) = d(Tx, Ty)

                               
)y,x(d1

)]Tx,x(d1)[Tx,x(d



  + β d(x, y) + γ d(x, Tx) + δ d(y, Tx)

                                  (β + δ)d (x, y).  Which gives d(x, y) = 0, since 0  β + δ < 1 and d(x, y)  0. Similarly
d(y, x) = 0 and hence x = y.
Thus fixed point of T is unique.

Remark:
(i) If we put γ = δ = 0 we obtained Theorem 3.1 of 5.
(ii) If we put α = γ = δ = 0 we obtain Theorem 2.8 of 4.
(iii) If we put δ = 0 we obtain Theorem 3.1 of 6.
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