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Abstract

The aim of this paper  is to define and study  of new class of maps  called  pairwise  minimal  continuous,
pairwise  maximal  continuous, pairwise minimal  irresolute  and  pairwise  maximal  irresolute  maps  in bitopological
spaces and investigate the relations  between  these kinds of continuity.
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1.  Introduction

In the  years  2001 and  2003, F.  Nakaoka  and  N. Oda5,6,7 in- troduced  and  studied minimal  open (resp.
minimal  closed) sets  and  maximal open (resp.   maximal  closed) sets,  which are subclasses  of open (resp.
closed) sets.  The  complements  of minimal  open sets and  maximal  open sets are called maximal  closed sets
and  minimal  closed  sets  respectively.    Also in  the  years 2011 and 2012 1,2, S. S. Benchalli,  Basavaraj M.
Ittanagi and R. S. Wali, introduced and  studied  minimal  open sets and  maps  in topological  spaces and
pairwise minimal  open and pairwise maximal  open sets in bitopological  spaces.

J.  C. Kelly3, in the year 1963, first initiated the  concept  of bitopological spaces.  He defined a
bitopological  space (X, τ1 , τ2) to be a set X equipped  with two topologies τ1  and τ2  on X and initiated the
systematic study of bitopological space.  He extended  the notions  of separation axioms of single topological
space to bitopological  space.  Also in the  year 1999, Maki, Sundaram and  Balachandran4 have introduced the
concept  of τj   σk   continuous, bi-continuous and strongly  bi-continuous maps  in bitopological  spaces.  Here
we present  some of the definitions,  which are used in our study.
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In  this  paper,   we  introduce   and  investigate  a  new  class  of maps  called (σk , σl )  Mi O(Y )  τi -
continuous, (σk , σl )  Ma O(Y )   τi -continuous, (σk , σl )  Mi O(Y )  (τi , τj )-irresolute and (σk , σl )  Ma O(Y)
 (τi , τj)-irresolute maps in bitopological  spaces.

2.  Preliminaries :
2.1  Definition5: A proper  nonempty open subset U of a topological space X is said to be a minimal

open set if any open set which is contained in U is  or U.
2.2  Definition6: A proper  nonempty open subset U of a topological space X

is said to be maximal  open set if any open set which contains  U is X or U.
2.3  Definition7:  A proper  nonempty closed subset  F of a topological  space

X is said to be a minimal  closed set if any closed set which is contained  in F is
 or  F.

2.4 Definition7: A proper  nonempty closed subset  F of a topological  space X is said to be maximal
closed set if any closed set which contains F is X or F.

The  family of all minimal  open (resp.  minimal  closed) sets in a topological space  X is denoted  by
Mi O(X ) (resp.   Mi C (X )).   The  family of all maximal open (resp.  maximal closed) sets in a topological space
X is denoted by Ma O(X ) (resp.  Ma C (X )).

2.5  Definition1:
i) A topological space (X, τ ) is said to be Tmin  space if every nonempty proper open subset  of X is minimal

open set.
ii) A topological space (X, τ ) is said to be Tmax  space if every nonempty proper open subset  of X is maximal

open set.
2.6 Definition1: Let X and Y be the topological  spaces.  A map f : X  Y is called

i) minimal  continuous (briefly  min-continuous) if f  1 (M ) is an open set in X for every minimal  open set
M in Y.

ii) maximal  continuous (briefly max-continuous) if f  1 (M) is an open set in X for every maximal  open set M in
Y.

iii) minimal  irresolute  (briefly min-irresolute) if f  1 (M) is minimal  open set in X for every minimal  open set M
in Y.

iv) maximal  irresolute  (briefly  max-irresolute) if  f  1 (M ) is maximal  open set in X for every maximal  open set
M in Y.

2.7  Definition3:  Let X be a set and τ1  and τ2  be two different topologies on X. Then  (X, τ1 , τ2 ) is called
a bitopological  space.

2.8 Definition2:  Let  i, j  {1, 2} be the  fixed integers  and  (X, τ1, τ2 ) be a bitopological  space.
i) A proper  nonempty τi -open subset  M in X is said to be a (τi, τj )- minimal open (briefly (τi , τj )-min open) set

if any τj -open set which is contained  in M is either   or M itself.
ii) A proper  nonempty τi -open subset  M in X is said to be a (τi , τj )-maximal open (briefly (τi, τj )-maximal  open)

set if any τj -open set which contains  M is either  X or M itself.
iii) A proper  nonempty τi -closed subset  F in X is said to be a (τi , τj )-minimal closed (briefly (τi , τj )-min  closed)

set if any τj -closed set which is contained in F is either    or F itself.
iv) A proper  nonempty τi -closed subset  F in X is said to be a (τi, τj )- maximal closed (briefly (τi , τi )-maximal
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closed) set if any τj -closed set which contains  F is either  X or F itself.
The family of all (τi, τi )-minimal  open (resp.  (τi, τj )-minimal  closed) sets in a bitopological  space (X,

τ1 , τ2) is denoted  by (τi , τj )  Mi O(X ) (resp.  (τi , τj )  Mi C (X )).    The  family  of  all  (τi , τj )-maximal   open
(resp.    (τi , τj )-maximal closed) sets in a bitopological  space (X, τ1 , τ2 ) is denoted  by (τi , τj )  Ma O(X ) (resp.
(τi, τj )  Ma C (X )).

2.9 Definition2: Let i, j    {1, 2} be the fixed integers.
i) A bitopological  space  (X, τ1 , τ2 ) is said  to  be pairwise-Tmin  space  if every nonempty proper  τi -open set

is (τi, τj )-minimal  open set.
ii) A bitopological  space  (X, τ1 , τ2 ) is said  to  be pairwise-Tmax  space  if every nonempty proper  τi -open set

is (τi , τj )-maximal  open set.

2.10 Definition4: A map f : (X, τ1 , τ2 ) ’! (Y, σ1 , σ2 ) is called
i) τj   σk -continuous if f 1 (V )  τj  for every V   σk ,
ii) bi-continuous if f  is τ1  σ1 -continuous and τ2  σ2 -continuous,
iii) strongly-bi-continuous (briefly, s-bi-continuous) if f  is bi-continuous, τ1  σ2 -continuous and τ2  σ1

- continuous,
Throughout this chapter (X, τ1 ,  τ2 ), (Y, σ1 , σ2 ) and (Z, η1 , η2) denote nonempty

bitopological  spaces on which no separation axioms are assumed,  unless other- wise mentioned and the fixed
integers  i, j, k, l, m, n 1, 2.

3. Pairwise minimal continuous and  pairwise maximal continuous maps :
3.1   Definition:  Let  i, j, k, l   {1, 2}  be  fixed integers.    Let  (X, τ1 , τ2 )  and (Y, σ1 , σ2 ) be two

bitopological  spaces.   A map  f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) is called
i) (σk , σl )  Mi O(Y )  τi -continuous (pairwise minimal continuous) if  f 1 (M )  τi -open set in X for every M

 (σk , σl )  Mi O(Y ).
ii) (σk , σl )Ma O(Y ) τi -continuous (pairwise maximal continuous) if f 1 (M )  τi -open set in X for every M

 (σk , σl )  Ma O(Y ).
iii) (σk , σl )Mi O(Y )(τi , τj )-irresolute (pairwise minimal irresolute) if f 1 (M )  (τi , τj)  Mi O(X ) for every

M  (σk , σl )  Mi O(Y ).
iv) (σk , σl )Ma O(Y )(τi , τj )-irresolute (pairwise maximal irresolute) if  f 1 (M )  (τi , τj )  Ma O(X ) for every

M (σk , σl )  Ma O(Y ).

3.2.  Remark :  If τ1   = τ2   = τ  and  σ1   = σ2   = σ  in  the  Definition  3.1, then  the (σk , σl )  Mi O(Y ) 
τi -continuous, (σk , σl )  Ma O(Y )  τi -continuous, (σk , σl )  Mi O(Y )  (τi , τj )-irresolute and (σk , σl )  Ma O(Y)
 (τi , τj )-irresolute maps  coincide with  minimal  continuous, maximal  continuous, minimal  irresolute and
maximal  irresolute  maps respectively.

3.3   Theorem:  Every  τi  σk    continuous  map  is  (σk , σl )  Mi O(Y )  τi - continuous but not
conversely.

Proof: Let f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be a τi  σk  continuous map.  To prove that f  is (σk , σl )  Mi O(Y)



τi -continuous.   Let  N be any  (σk , σl )-minimal open set in Y. Since every (σk , σl )-minimal  open set is an
σk -open set, N is an σk -open set in Y. Since f  is τi  σk  continuous, f 1 (N ) is an τi -open set in X. Hence f  is a
(σk , σl )  Mi O(Y )  τi -continuous.

3.4 Example: Let X = Y  = {a, b, c, d} be with topologies τ1  = {, {a}, {a, b}, X }, τ2  = {, {a}, {a, c}, X},
σ1  = {, {a}, {a, b, c}, Y } and σ2  = {, {a}, {a, b}, {a, b, c}, Y }.  Let  f  : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be an identity
map.  Then  f   is a (σ1 , σ2 )  Mi O(Y )  τ1 -continuous but  it is not  a τ1   σ1 -continuous map,  since for the
σ1 -open set {a, b, c}  Y, f 1 ({a, b, c}) = {a, b, c} which is not an τ1 -open set in X.

3.5  Theorem:   Let  f  : (X, τ1 , τ2 ) (Y, σ1 , σ2 ) be a (σk , σl )  Mi O(Y )  τi - continuous, onto  map  and
(Y, σ1 , σ2 ) be a pairwise-Tmin  space.   Then  f  is a τi  σk  continuous.

Proof: Let  f  : (X, τ1, τ2 ) (Y, σ1 , σ2 ) be a (σk , σl )  Mi O(Y )  τi -continuous, onto  map.   Note  that
the  inverse  image of  and  Y are always  τi -open sets in a bitopological  space X. Let  N be any  nonempty
proper  τk -open set in Y. By hypothesis,   (Y, σ1 , σ2 )  is pairwise-Tmin  space,  it  follows that N is a  (σk , σl )-
minimal open set in Y. Since f  is (σk, σl )  Mi O(Y )  τi -continuous,  f 1 (N ) is an τi -open set in X. Therefore
f  is a τi  σk  continuous.

3.6  Theorem :  Every  τi  σk   continuous map  is  (σk , σl )  Ma O(Y )  τi - continuous but not
conversely.

Proof:  Similar to that of Theorem  3.3.
3.7 Example: Let Let X = Y  = {a, b, c, d, e} be with topologies τ1  = {, {a}, {a, b, c, d}, X }, τ2   = {, {b},

{a, b, c, d}, X }, σ1   = {, {a, b}, {a, b, c, d}, Y } and σ2  = {, {a, b}, {a, b, c}, {a, b, c, d}, Y }.   Let   f  : (X, τ1 , τ2)
 (Y, σ1 , σ2 ) be an identity  map.   Then  f  is a (σ1 , σ2 )  Ma O(Y )  τ1 -continuous but  it is not  a τ1σ1

continuous map, since for the σ1 -open set {a, b}  Y, f 1 ({a, b}) = {a, b} which is not an τ1 -open set in X.
3.8 Theorem: Let  f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be a (σk , σl )  Ma O(Y )  τi -continuous, onto map and

let (Y, σ1 , σ2 ) be a pairwise-Tmax  space.  Then  f  is a τi  σk  continuous.
Proof:  Similar to that of  Theorem  3.5.
3.9  Remark: (σk , σl )  Mi O(Y )  τi -continuous and (σk , σl )  Ma O(Y )  τi - continuous maps are

independent of each other.
3.10   Example:  In  Example  3.4,  f  is a  (σ1 , σ2 )  Mi O(Y )  τ1 -continuous but it  is not  a  (σ1 , σ2 )

 Ma O(Y )  τ1 -continuous.   In  Example  3.7,  f  is a (σ1 , σ2 )  Ma O(Y )  τ1 -continuous but it  is not  a  (σ1 ,
σ2 )  Mi O(Y)  τ1 - continuous.

3.11  Theorem: Let (X, τ1 , τ2 ) and  (Y, σ1 , σ2 ) be two bitopological  spaces.  A map  f  : X  Y  is a (σk,
σl )  Mi O(Y )  τi -continuous if and only if the inverse image of each (σk , σl )-maximal  closed set in Y is a
τi -closed set in X.

Proof: The  proof follows from the  definition  and  fact that the complement of (σk , σl )-minimal  open
set is (σk , σl )-maximal  closed set.

3.12  Theorem:  Let (X, τ1, τ2 ) and  (Y, σ1 , σ2 ) be two bitopological  spaces.  A map f  : X Y  is a
(σk, σl )  Ma O(Y )  τi -continuous if and only if the inverse image of each (σk , σl )-minimal  closed set in Y is
a τi -closed set in X.
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Proof: The  proof follows from the  definition  and  fact that the complement of (σk , σl )-maximal  open
set is (σk , σl )-minimal  closed set.

3.13  Theorem: Let (X, τ1 , τ2 ) and (Y, σ1 , σ2 ) be two bitopological  spaces and A be  a  nonempty subset
of X.  If  f  : (X, τ1 , τ2 )    (Y, σ1 , σ2 )  is a  (τk , τl )  Mi O(Y )τi -continuous then the restriction map fA : (A, τ1A,
τ2A )  (Y, σ1 , σ2 ) is a (σk , σl )  Mi O(Y )  τiA -continuous map.

Proof: Let  f  : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) is a (σk , σl )  Mi O(Y )  τi -continuous. To prove fA : (A, τ1A , τ2A)
 (Y, σ1, σ2 ) is a (σk, σl )  Mi O(Y )  τiA -continuous map.  Let N be any (σk , σl )-minimal open set in Y. Since

f  is (σk , σl ) Mi O(Y )  τi -continuous, f 1 (N ) is an τi -open set in X. By definition  of  relative  topology,  f 1
A

(N ) = A  f 1 (N ).  Therefore  A f 1 (N ) is an τiA -open set in A. Therefore  fA  is a (σk , σl )  Mi O(Y )  τiA -
continuous map.

3.14 Theorem:  Let  (X, τ1 , τ2 )  and  (Y, σ1 , σ2 )  be  two  bitopological   spaces  and  let  A  be  a  nonempty
subset  of X.  If  f  :  (X, τ1 , τ2 )    (Y, σ1 , σ2 )  is a (σk , σl )  Ma O(Y )  τi -continuous then the restriction map
fA : (A, τ1A , τ2A ) (Y, σ1 , σ2 ) is a (σk , σl )  Ma O(Y )  τiA -continuous map.

Proof :  Similar to that of Theorem  3.13.
3.15   Remark :  The  composition  of (σk , σl )  Mi O(Y )  τi -continuous  maps need not be a (σk , σl)

 Mi O(Y )  τi -continuous map.
3.16 Example:  Let  X   = Y    = Z  = {a, b, c, d}  be  with  topologies  τ1    = {, {a}, {a, c}, X }, τ2  = {,

{a}, {a, d}, X }, σ1  = {, {a}, {a, b}, {a, b, c}, Y }, σ2  = {, {a}, {a, b}, {a, c}, {a, b, c}, Y }, η1 = {, {a, b}, {a, b,
c}, Z } and η2 = {φ, {a, b}, {a, c, d}, Z }.  Let f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) and g : (Y, σ1 , σ2 )  (Z, η1 , η2 ) be
the identity maps.  Then  clearly f  is a (σ1 , σ2 )  Mi O(Y )  τ1 -continuous and g is a (η1 , η2 )  Mi O(Y )  σ1 -
continuous but go f : (X, τ1 , τ2 )  (Z, η1 , η2 ) is not a (η1 , η2 )  Mi O(Y )  τ1 -continuous  map,  since for the
(η1 , η2 )-minimal open set {a, b} in Z, (gof )1 ({a, b}) = {a, b} which is not a τ1 -open set in X.

3.17  Theorem: Let (X, τ1 , τ2 ), (Y, σ1 , σ2 ) and (Z, η1 , η2 ) be three bitopological spaces.  If  f  : X Y  is
τi σk -continuous and g : Y   Z is (ηm , ηn )Ml O(Y ) σk -continuous maps, then go f : X  Z is a (ηm , ηn )
 Mi O(Y ) τi -continuous.

Proof:  Let  N be any  (ηm , ηn )-minimal  open  set  in Z. Since g is (ηm , ηn )  Mi O(Y )  σk -continuous,
g1 (N )  is an  σk -open  set  in  Y.  Again  since  f  is τi  σk   continuous, f 1 (g1 (N )) = (go f )1 (N ) is an τi -open
set in X. Hence go f  is a (ηm , ηn )  Mi O(Y )  τi -continuous.

3.18  Remark :  The  composition  of  (σk , σl )  Ma O(Y ) τi -continuous maps need not be a (σk , σl )
 Ma O(Y)  τi -continuous map.

3.19 Example:  Let  X   = Y    = Z  = {a, b, c, d}  be  with  topologies  τ1    = {, {a}, {a, b, c}, X },
τ2  = {, {b}, {a, b, c}, X }, σ1  = {, {a, b}, {a, b, c}, Y }, σ2  = {, {a}, {a, b}, {a, b, c}, Y }, η1  = {, {b}, {a, b}, Z}
and  η2  = {, {a}, {a, b}, Z }. Let  f : (X, τ1 , τ2 )   (Y, σ1 , σ2 ) and  g : (Y, σ1 , σ2 )   (Z, η1 , η2 ) be the  identity
maps.   Then  clearly  f  is a (σ1 , σ2 ) Ma O(Y )  τ1 -continuous and  g is a (η1 , η2 ) Ma O(Y )  σ1 -continuous
but go f  : (X, τ1 , τ2 ) (Z, η1 , η2 ) is not  a (η1 , η2 ) Ma O(Y )  τ1 -continuous map, since for the (η1 , η2 )-maximal
open set {a, b}  Z, (go f )1 ({a, b}) = {a, b} which is not a τ1 -open set in X.

3.20  Theorem: Let  (X, τ1 , τ2 ), (Y, σ1 , σ2 ) and  (Z, η1 , η2 ) be three  bitopological spaces.   If  f : X  
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Y   is τi  σk -continuous and  g : Y    Z  is (ηm , ηn )  Ma O(Y )  σk -continuous maps,  then g : X  Z is a
(ηm , ηn )  Ma O(Y ) τi - continuous.

Proof :  Similar to that of  Theorem  3.17.
3.21 Theorem : Every (σk , σl )  Mi O(Y )  (τi , τj)-irresolute map is (σk , σl )   Mi O(Y )  τi -continuous

but  not conversely.
Proof :  Let  f :  (X, τ1 , τ2 )    (Y, σ1 , σ2 )  be  a  (σk , σl )  Mi O(Y )  (τi , τj)-irresolute  map.   To  prove

(σk, σl )  Mi O(Y )  τi -continuous.   Let  N be any (σk , σl )- minimal open set in Y. Since f  is (σk , σl )  Mi O(Y)
 (τi , τj )-irresolute, f 1 (N ) is a (τi , τj )-minimal  open set in X. Since every (τi , τj )-minimal  open set is an τi -open
set, f 1 (N ) is an τi -open set in X. Hence f  is a (σk , σl ) Mi O(Y ) τi -continuous.

3.22 Example: Let X = Y  = {a, b, c, d} be with topologies τ1  = {, {a}, {a, b}, X }, τ2  = {, {b}, {a, b},
X }, σ1  = {, {a, b}, {a, b, c}, Y } and σ2  = {, {a, b}, {a, b, d}, Y }.  Let f  : (X, τ1, τ2 )  (Y, σ1 , σ2 ) be an identity
map.  Then  f  is a (σ1 , σ2 )  Mi O(Y )  τ1 -continuous but  it is not a (σ1 , σ2 )  Mi O(Y )  (τ1 , τ2 )- irresolute
map, since for the (σ1 , σ2 )-minimal  open set {a, b} in Y, f 1 {a, b}) = {a, b} which is not a (τ1 , τ2 )-minimal  open
set in X.

3.23 Theorem: Let f  : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be a (σk , σl )  Mi O(Y )(τi , τj )-irresolute,  onto  map  and
let (Y, σ1 , σ2 ) be a pairwise-Tmin  space.  Then  f  is a τi  σk -continuous.

Proof :  Proof  follows from the Theorems  3.21 and 3.5.
3.24 Theorem: Every (σk , σl )  Ma O(Y )  (τi , τj )-irresolute map is (σk , σl ) Ma O(Y)  τi -continuous

but  not conversely.
Proof :  Similar to that of  Theorem  3.21.
3.25  Example: Let X = Y  = {a, b, c, d} be with topologies τ1  = {, {a, b}, {a, b, c}, X }, τ2  = {, {a, b},

{a, b, d}, X }, σ1  = {, {a}, {a, b}, Y } and σ2  = {, {b}, {a, b}, Y }.   Let  f  : (X, τ1 , τ2 )   (Y, σ1 , σ2 ) be an  identity
map.   Then  f is a (σ1 , σ2 )  Ma O(Y )  τ1 -continuous but it is not a (σ1 , σ2 )  Ma O(Y )  (τ1 , τ2 )-
irresolute  map, since for the (σ1 , σ2 )-maximal  open set {a, b}  Y, f 1( {a, b}) = {a, b} which is not a (τ1 , τ2 )-
maximal  open set in X.

3.26   Theorem:  Let  f : (X, τ1 , τ2)    (Y, σ1 , σ2 ) be a (σk , σl )  Ma O(Y ) (τi , τj )-irresolute, onto map
and let (Y, σ1 , σ2 ) be a pairwise-Tmax  space.  Then f  is a τi  σk -continuous.

Proof :  Proof  follows  from  the Theorems  3.24 and 3.8.
3.27  Remark: (σk , σl )  Mi O(Y )  (τi , τj )-irresolute and  τi σk   continuous maps are independent

of each other.
3.28 Example: Let X = Y  = {a, b, c, d} be with topologies τ1  = {, {a}, {a, b}, {a, c}, {a, b, c}, X },

τ2   = {, {b}, {a, b}, {a, c}, {a, b, c}, X }, σ1   = {, {a, b}, Y } and  σ2  = {, {a, c}, Y }.   Let  f : (X, τ1 , τ2 )  (Y, σ1,
σ2 ) be an  identity  map. Then  f is a τ1   σ1   continuous but it  is not  a (σ1 , σ2 )  Mi O(Y )  (τ1 , τ2 )-
irresolute map, since for the (σ1 , σ2 )-minimal  open set {a, b}  Y, f 1 ({a, b}) = {a, b}  which  is not  a  (τ1 , τ2)
-minimal  open  set  in X. In  Example  3.4,  f  is a (σ1 , σ2 )  Mi O(Y )  (τ1 , τ2 )-irresolute but  it is not  a τ1   σ1

continuous map, since for the σ1 -open set {a, b, c}  Y, f 1 ({a, b, c}) = {a, b, c} which is not  an
τ1 -open set in X.

3.29  Remark: (σk , σl )   Ma O(Y )   (τi , τj )-irresolute and  τi   σk   continuous
maps are independent of each other.
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3.30   Example:  In  Example  3.28,  f  is a τ1    σ1   continuous but  it  is not  a (σ1 , σ2 )   Ma O(Y ) 
(τ1 , τ2 )-irresolute map, since for the (σ1 , σ2 )-maximal  open set {a, b}   Y, f  1 ({a, b}) = {a, b} which is not  a
(τ1 , τ2 )-maximal  open set in X. In Example  3.7, f  is a (σ1 , σ2)   Ma O(Y )   (τ1 , τ2 )-irresolute but it is not a
τ1 σ1  continuous map, since for the σ1-open set {a, b}Y, f  1 ({a, b})={a, b} which is not an τ1-open set in X.

3.31  Remark: (σk , σl )   Mi O(Y )   (τi, τj )-irresolute and (σk , σl )   Ma O(Y )   (τi , τj )-irresolute maps
are independent of each other.

3.32  Example: In Example  3.4, f  is a (σ1 , σ2 )   Mi O(Y )   (τ1 , τ2 )-irresolute but it is not a (σ1 , σ2 )
Ma O(Y ) (τ1 , τ2 )-irresolute map.  In Example 3.7, f  is a (σ1 , σ2 ) Ma O(Y )   (τ1 , τ2 )-irresolute but it is not a
(σ1 , σ2 )   Mi O(Y ) (τ1 , τ2 )- irresolute  map.

3.33  Theorem: Let (X, τ1 , τ2 ) and  (Y, σ1 , σ2 ) be two bitopological  spaces.  A map f : X   Y  is a
(σk , σl )   Mi O(Y )   (τi, τj )-irresolute if and only if the inverse image of each (σk , σl )-maximal  closed set in Y
is a (τi , τj )-maximal  closed set in X.

Proof: The  proof follows from the  definition  and  fact that the complement of (σk , σl )-minimal  open
set is (σk , σl )-maximal  closed set.

3.34  Theorem: Let (X, τ1 , τ2 ) and  (Y, σ1 , σ2) be two bitopological  spaces.  A map  f  : X   Y   is a
(σk, σl )   Ma O (Y )   (τi , τj )-irresolute if and  only if the inverse image of each (σk , σl )-minimal  closed set in
Y is a (τi , τj )-minimal  closed set in X.

Proof: The  proof follows from the  definition  and  fact that the complement of (σk , σl )-maximal  open
set is (σk , σl )-minimal  closed set.

3.35   Theorem: Let  (X, τ1 , τ2 ), (Y, σ1 , σ2 ) and  (Z, η1 , η2 ) be three  bitopolog- ical spaces.   If f  : X  
Y   is (σk , σl )   Mi O(Y )   (τi , τj )-irresolute and  g : Y   Z is (ηm , ηn )   Mi O(Z )   (σk, σl )-irresolute maps,
then  go f : X  Z is a (ηm , ηn )   Mi O(Z )   (τi , τj )-irresolute.

Proof :  Let  N be any  (ηm , ηn )-minimal  open  set  in Z. Since g is (ηm , ηn )   Mi O(Z )   (σk , σl )-
irresolute, g1 (N ) is a (σk , σl )-minimal  open set in Y. Again since f  is (σk , σl )  Mi O(Y )   (τi , τj )-irresolute,
f  1 (g 1 (N ))=(go f ) 1 (N ) is a (τi , τj )-minimal  open set in X. Therefore  go f  is a (ηm , ηn )  Mi O(Z ) (τi , τj )-
irresolute.

3.36  Theorem: Let (X, τ1 , τ2), (Y, σ1 , σ2 ) and (Z, η1 , η2) be three bitopological spaces.  If  f  :  X  Y  is
(σk , σl )   Ma O(Y )   (τi , τj )-irresolute and  g : Y   Z is  (ηm , ηn )   Ma O(Z )   (σk , σl )-irresolute  maps,   then
go f   :  X     Z  is  a (ηm , ηn )   Ma O(Z )   (τi , τj )-irresolute.

Proof: Similar to that of Theorem  3.35.
3.37  Definition:  Let  i, j, k, l  {1, 2}  be fixed integers.   Let  (X, τ1 , τ2 ) and (Y, σ1 , σ2 ) be two

bitopological  spaces.   A map  f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) is called
i) minimal  bi-continuous if (σ1 , σ2 )  Mi O(Y)  τ1 -continuous  and  (σ2 , σ1 )  Mi O(Y )  τ2 -continuous.
ii) maximal  bi-continuous if (σ1 , σ2 )  Ma O(Y )  τ1 -continuous and (σ2 , σ1 )  Ma O(Y )  τ2 -continuous.
iii) minimal bi-irresolute if (σ1 , σ2 )  Mi O(Y )  (τ1 , τ2 )-irresolute and (σ2 , σ1 )  Mi O(Y )  (τ2 , τ1 )-irresolute.
iv) maximal bi-irresolute if (σ1 , σ2 )  Ma O(Y )  (τ1 , τ2 )-irresolute and (σ2 , σ1 )  Ma O(Y )  (τ2 , τ1 )-irresolute.

3.38  Theorem :  Let f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be a map.
i) If  f  is bi-continuous then f  is minimal  bi-continuous.
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ii) If  f  is bi-continuous then  f   is maximal  bi-continuous.
iii) If  f  is minimal  bi-irresolute then  f  is minimal  bi-continuous.
iv) If  f  is maximal  bi-irresolute then  f  is maximal  bi-continuous.

Proof:  i) Let  f  : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be a bi-continuous map.  Therefore  by definition, f  is τ1  σ1

continuous and τ2  σ2  continuous and so by Theorem  3.3,  f  is (σ1 , σ2 )  Mi O(Y )  τ1 -continuous and
(σ2 , σ1)  Mi O(Y)  τ2 -continuous. Thus,  f is a minimal  bi-continuous.
ii) Similar to (i), using Theorem  3.6.
iii) Let f : (X, τ1 , τ2 )(Y, σ1 , σ2 ) be a minimal bi-irresolute  map.  Therefore by definition,  f  is (σ1 , σ2 ) Mi O(Y)

 (τ1 , τ2 )-irresolute and (σ2 , σ1 )  Mi O(Y )  (τ2 , τ1 )-irresolute and so by Theorem 3.21, f  is (σ1 , σ2 )
Mi O(Y) τ1-continuous and (σ2 , σ1 )  Mi O(Y )  τ2 -continuous.  Thus,  f  is a minimal  bi-continuous.

iv) Similar to (iii), using Theorem  3.24.
3.39   Definition:  Let  i, j, k, l  {1, 2}  be fixed integers.  Let  (X, τ1 , τ2 ) and (Y, σ1 , σ2 ) be two

bitopological  spaces.   A map  f : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) is called
i) minimal-s-bi-continuous if minimal  bi-continuous, (σ1 , σ2 )  Mi O(Y )  τ2 - continuous and (σ2 , σ1 ) 

Mi O(Y )  τ1 -continuous.
ii) maximal-s-bi-continuous if maximal  bi-continuous, (σ1 , σ2 )  Ma O(Y )  τ2 - continuous and (σ2 , σ1 ) 

Ma O(Y )  τ1  continuous.
iii) minimal-s-bi-irresolute if minimal  bi-irresolute, (σ1 , σ2 )  Mi O(Y )  (τ2 , τ1 )- irresolute  and (σ2 , σ1 ) 

Mi O(Y )  (τ1 , τ2 )-irresolute.
iv) maximal-s-bi-irresolute if maximal bi-irresolute, (σ1 , σ2 ) Ma O(Y )(τ2 , τ1 )- irresolute  and (σ2 , σ1 ) 

Ma O(Y )  (τ1 , τ2 )irresolute.

3.40  Theorem: Let : (X, τ1 , τ2 )  (Y, σ1 , σ2 ) be a map.
i) If is minimal-s-bi-continuous then  is minimal  bi-continuous.
ii) If is maximal-s-bi-continuous then  is maximal  bi-continuous.
iii) If is minimal-s-bi-irresolute then  is minimal  bi-irresolute
iv) If is maximal-s-bi-irresolute then  is maximal  bi-irresolute

Proof: follows from definitions.
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