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Abstract

 In this paper we make an attempt to study the effect of thermal radiation, dissipation and chemical
reaction on unsteady hydro-magnetic free convective heat and mass transfer flow of a Walter’s memory fluid
past a vertical plate. The non-linear equations governing the flow, heat and mass transfer are solved by using
a perturbation technique. The velocity, temperature, concentration, the rate of heat and mass transfer are
analyzed for different values of the governing parameters.

Key words: Non-Newtonian fluid, Porous medium, Thermal radiation, Chemical reaction, Memory flow
fluid , MHD.
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1. Introduction

Due to the prime importance of heat and mass transfer involving in chemical reaction, industrial
process the problem received considerable attention in recent years. Ramesh Babu et al.19 discussed the effect
of unsteady MHD free convective flow of a visco-elastic fluid past an infinite vertical porous moving plate with
variable temperature and Concentration. Bhavtosh2 studied the effects of heat and mass flux on MHD free
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convection flow through a porous medium in presence of radiation and chemical reaction. Kumaresan et al.,14

examined the effect an exact solution on unsteady MHD visco-elastic fluid flow past an infinite vertical plate in
the presence of thermal radiation.An extensive range of mathematical models has been developed to simulate
the diverse hydrodynamic behavior of these non-Newtonian fluids. An eloquent exposition of viscoelastic fluid
models has been presented by Joseph10. Examples of such models are the Oldroyd model15,16 .   Both steady and
unsteady flows have been investigated at length in a diverse range of geometric using a wide spectrum of
analytical and computational methods. Siddappa and Khapate20 studied the second order Rivlin-Erickson
viscoelastic boundary layer flow along a stretching surface. Abel and Nandeppanavar1,9 have investigated the
effects of heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat
source/sink. Gireesh Kumar and Satyanarayana7,8 have examined the mass transfer effects on MHD unsteady
free convective Walter’s memory flow with constant suction and heat sink. The requirements of modern technology
have stimulated interest in fluid flow studies which involve the interaction of several phenomena. One such
study is related to the effects of free convective flow with mass transfer, which plays an important role in
geophysical sciences, astrophysical sciences and in cosmical studies. In view of these applications several
researchers have given much attention towards free convecting flows of viscous incompressible fluids past an
infinite plate. Ramana Murthy et al.18 have discussed the MHD unsteady free convective Walter’s memory flow
with constant suction and heat sink. Numerical study of transient free convective mass transfer in a Walter’s –
B viscoelastic flow with wall suction was analyzed by Chang et al. 3,4,5,6,8,11,12,13,17.

2. Formulation of  the Problem :
We consider an unsteady hydromagnetic, chemically reacting, free convective flow of  incompressible

and electrically conducting fluid past an infinite vertical porous plate in the presence of constant suction and
heat absorbing sink. Let x - axis be taken in the vertically upward direction along the infinite vertical plate and
y - axis normal to it. The magnetic field of uniform strength is applied and induced magnetic field is neglected.
Boussineq’s approximation, for the equations of the flow is governed as:

Continuity equation is  0
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Energy Equation is
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Diffusion equation is
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From (1) we have
v =  v0  (5)

Invoking  Rosseland approximation for radiative heat flux we get
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Expanding 4T   in Taylor’s series about TTe and neglecting higher order terms
434 34 ee TTTT                (7)

where  is the Stefan-Boltzmann constant R  is the Extinction coefficient.
On disregarding the Joulean heat dissipation, the boundary conditions of the problem are:

y = 0: u = 0, ti
w eTTTT 
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In order to write the governing equations and the boundary conditions in dimensionless form, the
following non-dimensional quantities are introduced
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In view of the equation (9) the equations (2), (.3) and (4) reduced to the following non-dimensional form
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The following boundary conditions are:
y = 0: u = 0, T = 1+eit, C = 1+eit

y  : u  0, T  0, C  0  (13)

3. Solution of  the Problem :
The velocity, temperature and concentration of the fluid in the neighborhood of the plate as:

         u(y,t) = u0(y) + eitu1(y) T(y,t) = T0(y) + eitT1(y)
C(y,t) = C0(y) + eitC1(y) (14)

where u0, T0 and C0 are mean velocity, mean temperature and mean concentration. Substituting (14) in equations
(11)-(13), equating harmonic and non-harmonic terms for mean velocity, mean temperature and mean concentration,
after neglecting coefficient of 2, we get
Zero order of 
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The equations (15) and (18) are third order differential equations due to presence of elasticity.

Therefore u0 and u1 are expanded using Beard and Walters rule
u0 = u00 + Rmu01          (21)
u1 = u10 + Rmu11           (22)

Zero order of Rm
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First order of  Rm
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156 V.  Suresh  Babu,  et al., JUSPS-A  Vol. 30(2), (2018).



10111111 4
uuiMuu 






 


 (26)

Using the multi-parameter perturbation technique and assuming Ec << 1, we write
u00 = u000 + Ec  u001  (27)
u01 = u011 + Ec  u012  (28)
u10 = u100 + Ec  u101  (29)
u11 = u111 + Ec  u112  (30)
T0 = T00 + Ec  T01  (31)
T1 = T10 + Ec  T11  (32)
C0 = C00 + Ec  C01  (33)
C1 = C10 + Ec  C11  (34)
Using equations (27) - (34) in the equations (16), (17), (19), (20), (23), (24), (25) and (26) and equating the

coefficient of Ec0 and Ec1, we get the following set of differential equations:
Zero order of  Ec
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First order of Ec
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The corresponding boundary conditions are:   y = 0:
u000 = u001 = u011 = u012 = u100 = u101 = u111 = u112 = 0
T00 =1,  T01 = 0,  T10 = 1, T11 = 0, C00 =1,  C01 = 0,  C10 = 1, C11 = 0 y   (51)
u000  u001  u011  u112  u100  u101  u111  u112  0
T00  0,  T01  0,  T10  0, T11  0, C00  0,  C01  0,  C10  0, C11  0

The differential equations(35)-(49)have been solved subject to boundary conditions (51) and the solutions are
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4.  Nusselt Number And Sherwood Number
Local rate of heat transfer across the walls (Nusselt Number) is given by
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The rate of mass transfer across the walls (Sherwood Number) is given by
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5. Results and Discussion

In this analysis we investigate the effect of chemical reaction, thermal radiation on hydromagnetic
convective heat and mass transfer flow of Walter Memory fluid  through a porous medium past a porous vertical
plate.

    Fig. 1: Variation of u with K      Fig. 2: Variation of u with N1

              M = 2, D-1= 2, N=1, Sc=1.3,  S=0.5  G=2, M = 2, D-1= 2, N=1, Sc=1.3
                           N1=1.5,  = 2             S=0.5 K=0.5,  = 2

V.  Suresh  Babu,  et al.,  JUSPS-A  Vol. 30(2), (2018). 159



 The axial velocity(u) is shown in figs.1-2 for different values of K and N1. Fig.1 represents u with
chemical reaction parameter K. It is found that |u| reduces  in the degenerating chemical reaction case (K>0). The
variation of u with radiation parameter N1 is exhibited in Fig .2. The non-dimensional temperature (θ) is shown
in Figs. 3-4 for different parametric values . An increase in the chemical reaction parameter K or radiation
parameter N1 results in a depreciation in the actual temperature (Figs. 3). The non-dimensional concentration
(C) is shown in Fig.5 for different value K . From Fig. 5. It can be seen that the actual Concentration reduces with
increase in the chemical reaction parameter Kd” 1.5 and enhances with higher K=2.5 and again reduces with still
higher K  3.5.

        Fig. 3 :  Variation of θ with K          Fig. 4 : Variation of θ with N1

                    M = 2, D-1= 2, N=1, Sc=1.3 S=0.5        G=2, M = 2, D-1 = 2, N=1, Sc=1.3
                 N1=1.5,  = 2                    S=0.5 K=0.5,  = 2

 Fig. 5 : Variation of C with K   Sc=1.3,  =2
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Table  1 Shear stress () at y = 0
G I II III IV V VI VII
2 1.2746 1.05645 0.86191 0.53436 1.26239 1.25924 1.25533
5 2.67862 2.46047 2.26593 1.93838 2.6481 2.64023 2.63046
-2 -0.9743 -0.81558 -1.01012 -1.33767 -0.58523 -0.58208 -0.57817
-5 -2.00146 -2.2196 -2.41414 -2.74169 -1.97094 -1.96307 -1.9533
K 0.5 1.5 2.5 3.5 1 1 1
N1 1.5 1.5 1.5 1.5 3.5 5 10

              The skin friction (τ) at y = 0 is evaluated  numerically for different values of K and N1 and are shown in
table 1. It represents with chemical reaction parameter K. It is found that the skin friction depreciates with K in
the heating case and enhances in the cooling the channel walls. With respect to buoyancy ratio  we find that
when the molecular buoyancy force dominates over the thermal buoyancy force the skin friction enhance for
G > 0 and reduces for G < 0 when the buoyancy forces act in the same direction and for the forces acting in
opposite directions, |τ| reduces for G > 0 and enhances for G < 0. Higher the radio-active heat
flux  smaller |τ| at y=0 .

Table  2. Nusselt Number (Nu) at y = 0
Sc I II III IV V VI VII

0.24 -0.10575 -0.10792 -0.10882 -0.14644 -0.10638 -0.10667 -0.10685
0.6 -0.12047 -0.12201 -0.12648 -0.1266 -0.12104 -0.12129 -0.12146
1.3 -0.14664 -0.14761 -0.1558 -0.16101 -0.14709 -0.14731 -0.14752
2.01 -0.171 -0.17168 -0.18312 -0.19019 -0.17136 -0.17157 -0.17168
N1 1.5 1.5 3.5 10 0.5 0.5 0.5
K 0.5 0.5 0.5 0.5 1.5 2.5 3.5

                The rate of  heat transfer (Nusselt number) at y = 0 is depicted in table 2 for different parametric values.
|Nu|  reduces with increase in N>0 and enhances with |N| (<0) . An increase in the suction parameter S or chemical
reaction parameter K leads to an enhancement in |Nu|  An increase in the frequency ω enhances |Nu| at y=0 . The
variation of  Nu with D-1 shows that lesser the permeability of the porous medium smaller |Nu| at y = 0 .

                                                        Table  3. Sherwood Number (Sh) at y = 0
Sc I II III IV

0.24 -0.2466 -0.4919 -0.6638 -0.8043
0.6 -0.3245 -0.695 -0.961 -1.1799
1.3 -0.3856 -0.8903 -1.2664 -1.5799
2.01 -0.4145 -1.0012 -1.4516 -1.8314
K 0.5 1.5 2.5 3.5

The rate of mass transfer (Sherwood number)is shown in table.3. It is found that |Sh| enhances with
increase in  chemical reaction parameter K at y=0.

6. Conclusions

 The axial velocity |u| reduces in the degenerating chemical reaction case (K > 0) and depreciates with
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increase in  N1.

 An increase in the chemical reaction parameter K or radiation parameter N1   results in  a depreciation in the
actual temperature.

 The non-dimensional concentration (C) reduces with increase in the chemical reaction parameter K 1.5 and
enhances with higher K = 2.5 and again reduces with still higher K  3.5.

7.  Scope of future work :
The present study of a fluid flow over a vertical surface can be used as the basis for many scientific

and engineering applications in case of vertical surfaces.
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