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Abstract

In this paper, we obtain characterizations of graphs whose
semitotal-block graphs and total-block graphs are 3-minimally

nonouterplanar.

1. Introduction

In’, Kulli introduced the concepts of
the semitotal-block graphs and total-block
graphs. In* and 5, the planarity and outer
planarity of these graph valued functions were
discussed. In®, one finds the minimally non-outer
planarity of these graph valued functions. In',
D.G. Akka and M.S. Patil finds the 2-minimally
non-outer planarity of these graph valued
functions. In this paper, we obtain the
characterizations of graphs whose semitotal-
block graphs and total-block graphs are 3-
minimally nonouterplanar.

The following definitions will be noted
for later use. A graph G is called a block if it
has more than one vertex, is connected and
has no cutertices.

A block of a graph G is a maximal
subgraph of G which itself a block.
IfB={u;,uyeeeeeeenenn.nn. u, r>2} is a block
of G, then we say that vertex u; and block B
are incident with each other as are u; and B
so on. If two distinct blocks B; and B, are
incident with a common cutvertex, then they
are adjacent blocks. The vertices and blocks
of a graph are called the members.
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The following will be useful in the proof
of our results.

Lemma 1. For the graph K 5 i[T(K,3)]=2.

Theorem A'. The total block graph
Tg(G) of a connected outer planar graph G is
2-minimally nonouterplanar if and only if
1) G is a path Py, n>3 together with an end
edge adjoined at some non-end vertex
or
2) Gisa path Py, n>2 together with two vertices
each adjoined to a pair of adjacent vertices
of P,
or
3) G is a cycle of length 4 together with two
paths Py, and P, (m>1, n>2) adjoined at
two consecutive vertices
or
4) Gisacycle Cp, n24 with a diagonal edge
joining a pair of vertices of length exactly
2.

Theorem B*. The total block graph
Te(G) of a graph G is planar if and only if G is
outer planar and every cutvertex of G lies on
at most 3 blocks.

Theorem C°. The total block graph

Tg(G) of a graph G is outer planar if and only
if each component of G is a path.

Theorem D°. A graph G is a cycle if
and only if the semitotal — block graph and
total-block graph are isomorphic to a wheel.

Theorem E*. The total graph T (G) of
a graph G is planar if and only if the maximum
degree among the vertices of G is atmost 3
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and every vertex of degree 3 is a cutvertex.

Theorem F>. A connected graph G is
atree if and only if the graph T(G) and Tg(G)
are isomorphic.

2. Main Results:

A criterion for the semitotal block
graph of a connected graph G to be 3-minimally
nonouterplanar is given in the following
theorem. '

Theorem I. The semitotal block graph
Tw(G) of a connected graph G is 3-minimally
nonouterplanar if and only if (1) or (2) holds.

1) G has exactly three cycles and each cycle
is a block
or

2) G is a cycle C, (n26) together with a
diagonal edge joining a pair of vertices
of length (n-3).

Proof. Suppose Tp(G) is 3-minimally
nonouterplanar. Then Ty (G) is planar.

We now consider the following cases.

Case 1. Assume G is a tree. Then
every block of Ty(G) is a triangle. Hence Ty(G),
is outer planar, a contradiction.

Case 2. Assume G is not a tree.

We consider the following subcases
of case 2.

Subcase 2.1. Suppose G has four
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cycles. Then we have following subcases of
subcase 2.1.

Subcase 2.1.1. Assume each cycle
is a block. Then each cycle in Ty(G) gives a
wheel. Hence, i [Ty(G)]>3, a contradiction.

Subcase 2.1.2. Assume G has two
cycles Cy and C; as blocks. Then the remaining
block is isomorphic to K4-x In Ty(G), C; and
C, gives wheels as W; and W,, where as
i(K4-x)=2. Thus, i[Tp(G)]>3, a contradiction.

Subcase 2.1.3. Assume G has two
cycles C; and C; as blocks, which are
isomorphic to (K4-x). Then in Ty(G) i(K4-x)=2.
Hence, i [Tv(G)]>3, a contradiction.

Subcase 2.1.4. Assume G has four
cycles as a block B, and remaining blocks are
edges of G. Thus, G is a maximal outer planar
graph with 6 vertices. In Ty(G) the block
vertex b is adjacent with each vertex of B.
Thus i[ Tp(G)]>3, a contradiction.

Subcase 2.2. Suppose G has three
cycles. Then there exists two blocks B; and
B; in which one block B; is a cycle and Bz is
isomorphic to K4-x such that atleast three
vertices of Ky-x are adjacent to atleast one
block. In embedding of Ty(G), i[Tp(B;)]=1 and
i[Ty(B2)]>2. Hence i[ T(G)]>3, a contradiction.

Subcase 2.3. Suppose G has two
cycles. Then we have subcases of subcase
23

Subcase 2.3.1. Assume each cycle
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is a block. Then each block and corresponding
block vertices forms wheel in T(G). Hence,
i[Tw(G)]<3, a contradiction.

Subcase 2.3.2. Assume G has two
cycle as a block. Then we consider the following
subcases of subcase 2.3.2.

Subcase 2.3.2.i. Suppose G is
isomorphic to K4-x. Then i[Tp(G)]<3, a
contradiction.

Subcase 2.3.2.2. Suppose a vertex
of K4-x is adjacent to some blocks. Then the
block vertex b corresponds to K4-x is adjacent
to all vertices of K4-x. In embedding Tp(G) in
any plane, we have i[ T(G)]<2, a contradiction.

Subcase 2.3.2.3. Suppose two vertices
of K4-x are adjacent to some blocks. Then
the block vertex b corresponds to (K4-x) is
adjacent to all vertices of K4-x. In embedding
Ts(G) in any plane, we have i[T,(G)]<3, a
contradiction.

Subcase 2.3.2.4. Suppose three
vertices of (K4-x) are adjacent to atleast one
block. Then in T,(G) the edges joining the block
vertex of K4-x and all vertices of Ky4-x

generates the planar representation such that
the block vertices of blocks which are adjacent

to three vertices of K4-x lies in the interior region
of Ty(G) with i[Ty(G)] >3, a contradiction.

Subcase 2.3.2.5. Suppose each vertex
of K4-x is adjacent to atleast one block. Then
the block vertex b corresponds to (K4-x) is adjacent
to 2!l vertices of (K4-x). In plane embedding
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of Ty(G). We have i[ Ty(G)]>4, a contradiction.

Subcase 2.4. Suppose G is unicyclic
graph. Then i[Ty(G)]<3, a contradiction.

Case 3. Assume G is a cycles C,
(n=6). Then we have following subcases of
case 3.

Subcase 3.1. Suppose G is a cycle
C, (n>6) as a block, with diagonal edge joining
a pair of vertices of length (n-3). Then G
contains one more cycle C'p as a block, clearly
i[To(G)]>3, a contradiction.

Subcase 3.2. Suppose G is a cycle
C. (n>6) as a block, together with diagonal
edge' joining a pair of vertices of length (n-4).
Then i[Tp(G)J>3, a contradiction.

Subcase 3.3. Suppose G is a cycle
Ci(n>6) as a block, together with diagonal
edge joining a pair of vertices of length (n-2).
Then i[Tp(G)]<3, a contradiction.

Conversely, suppose (1) holds. Then
G has exactly 3 cycles and each cycle is a

block. By Theorem D, Ty(G) has exactly three
wheels as blocks. We know that every wheel

is a minimally nonouterplanar. Thus i[Ty
(G)]=3.

Suppose (2) holds, now we can make
use of mathematical induction on n of cycle
Cn Suppose n=6. Then G is a cycle Cg with
the vertices {vy, v;.......... Vé}, together with
diagonal edge x joining a pair of vertices v,
and v, of length 3. So that G has two cycles
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C'y and C"'4 with the vertices vy, v, vs, V4, Vi
and vy, vy, Vs, Vs, V] respectively. Since Cp, P>6
is a block, let b be a block vertex in Ty(G)
which is adjacent to all the vertices of Cp, P>6.
In planar embedding of Tp[Cs]. It is easy to
see that the planar embedding of Ty(G), either
v2, vz of cycle C's or vs, vg of cycle C”4 together
with a block vertex b lie in the interiorregion
of planar embedding. Hence, Ty(G) is
3-minimally nonouterplanar. Assume that result
is true for n=k. Then G is a cycle of length Cy,
clearly Ty(G) is (K-3) — minimally nonouter-
planar.

Suppose n=k+1. Then G is a cycle of
length Cy+1. Then we have to prove that Ty(G)

is (k-2) — minimally nonouterplanar.

Let vii1 be vertex on a cycle Cyyq. If
we delete a vertex vi+ from a cycle Cy+q by
deleting the edges ex=(vi+1, Vi) and ey =
(Vk+1, v1) which are incident with a vertex vy,
resulting a cycle of length Cy. By inductive
hypothesis Ty(Cx) is (k-3) — minimally
nonouterplanar. Now rejoining a vertex v+
to a cycle Cy by joining the edges ey+; and e,
resulting a cycle of length Cyyy. It has two
cycles C4 with the vertices vy, v, v3, va, Vi,
and C'x with the vertices vy, vq, vs,...............
Vi, Vk+1, Vi. In Tp[Cysq] the block vertex b
corresponds to Cy+) is adjacent to all the
vertices of Cy+1. Such that vy, vs, b lies in the

interior region of planar embedding.
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Hence, Ty(G) has [(k+1)-3]=(k-2) minimally
nonouterplanar.

Hence the proof.

In the following theorem, we establish
a criterion for the total — block graph of a
connected graph to be 3-minimally nonouter-
planar.

Theorem 2. The total — block graph
Ts(G) of a connected outer planar graph G is
3-minimally nonouterplanar if and only if.

1) G has exactly three triangles as blocks, such
that atmost two blocks lie on a common
cut vertex,
or

2) Ghas exactly two cycles C3 and C4 as blocks,
or

3) G is a triangle together with two paths Py,
and P, (m>2, n>2) incident at a same vertex,
or

4) G is a triangle together with paths Py, P,
(m>2, n>2) and P, incident at different
vertices,
or -

5) G is a cycle Cs together with a path Py,
(n>2) incident to a vertex of Cs,
or

6) G is acycle Cs together with two paths P,
and P,,(m>1, n>1) adjoined at two consecutive
vertices,
or

7) Gisacycle of length C,(n>5) together with
two diagonal edges each joining a pair of
vertices of length exactly two or together
with two diagonal edges each joining a pair
of vertices of length two and three which
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are adjacent,
or

8) Gisacycle of length C,(n>6) together with
a diagonal edge joining a pair of vertices of
length exactly 3.

Proof. Suppose Tg(G) is 3-minimally
nonouterplanar. Then Tg(G) is planar.

We now consider the following cases.

Case 1. Assume G is a tree. Then by
Theorem F, T(G) and Tg(G) are isomorphic
and hence by Theorem E, G has maximum
degree atmost 3 and every vertex of degree 3
is a cut vertex.

We consider subcases of case 1.

Subcase 1.1. Suppose G has atleast
two cut vertices of degree 3. Then G has two
subgraphs which are isomorphic to K; 3. Then
by Lemma 1, i[T(K;3)]=2. Since T(K;3) =
To(K1,3), i[Ts(K1,3)]=2, Since Tp (K13)
Ts(G), i[T(G)]>3, a contradiction.

Subcase 1.2. Suppose G has a vertex
v lies on 3 blocks and each block has no end
vertex. Then G has a subgraph isomorphic to
S (K1,3). On planar embedding of Tg(G),
i[Te(S(K13))] 24. Since S(K 3) is a subgraph
of G i[T(G)] >4, a contradiction.

Subcase 1.3. Suppose G has a vertex
v lies on 3-blocks in which atleast one block
has an end vertex of G. Then by condition (1)
of Theorem A, Tg(G) is a 2-minimally
nonovterplanar, a contradiction.
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Case 2. Assume G is not a tree.

We consider the following subcases
of case (2).

Subcase 2.1. Suppose G has three
cycles. Then we have the following subcases
of subcase 2.1.

Subcase 2.1.1. Assume G has three
cycles, in which two cycles are C3 and other
cycle is Cp(n>4). In Tp(G), each C; gives Ky.
Then i(K4) = 1. For the cycle Cp(n2>4), i(Cy)
>2. Hence, i[Tp(G)]>3, a contradiction.

Subcase 2.1.2. Assume G has three
cycles Cj as blocks and these three blocks lie
on a common cut vertex. Then in Tg(G), each
cycle C; and corresponding block vertex forms
K4 as a subgraph. But in Tg(G) the three block

vertices of cycles are mutually adjacent.
Further the edges joining the block vertices of

C;increases the inner vertex number in a planar
embedding. Hence, i Tg(G)}>3., a contradiction.

Subcase 2.2. Suppose G has four
cycles Cs as blocks. Then we have subcases
of subcase 2.2.

Subcase 2.2.1. Assume G has four
cycles Cs as blocks, such that each two C; lie
on a common cut vertex. The block vertices
corresponds to cycles Cs and corresponding
vertices of cycles Cs are adjacent in Tg(G). Then
each cycle C; forms K4 as subgraphs in Tp(G).
Since, the block vertices are adjacent in Ts(G).

Then the edges joining these three vertices
generates the increase in the inner vertex

M. H. Muddebinal, et al.

number. Thus, i[Ts(G)]>3, a contradiction.

Subcase 2.2.2. Assume there exists
a bridge between the cycles Cs. In Ts(G) each
cycle C; forms K4 and bridges form triangles
as subgraphs. In Tg(G) the block vertices are
also adjacent. Thus, i{Ts(G)]>3, a contradiction.

Subcase 2.3. Suppose G has two

cycles, Cy(n>3). Then we consider following
subcases of subcase 2.3.

Subcase 2.3.1. Assume G has cycles
Cs, as blocks B; and B;. Then in Tg(G) the
block vertices by and b, corresponds to B; and
B, which are adjacent to every vertex of B;
and B,. Also block vertices b; and b, are
adjacent in T(G). Hence, in K4 is an induced
subgraph in Tg(G). Clearly i[Ts(G)]<3, a
contradiction.

Subcase 2.3.2. Assume G has exactly
two cycles Cy as a block. Then in Tg(G), each
C4 has i[Tp(C4)]=2. Since each Tg(C,) is an
induced subgraph of Tp(G). Then i[Ts(G)}>3,
a contradiction.

Subcase 2.3.3. Assume G has C; and
Cs as blocks. Then in planar embedding of
Tg(G), i[Ts(C3)]=1 and i[Ts(Cs)]=3. Thus
i[Te(G)]>3, a contradiction.

Subcase 2.3.4. Assume G has C, and
Cs as blocks. Then by subcase 2.3.2 and
subcase 2.3.3, i[Tg(G)]>3, a contradiction.

Subcase 2.4. Suppose G has a triangle
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together with 3 paths Pp(n>2) incident at a
unique vertex. Suppose each path is of length
atmost two. Then in depicting the Tp(G) in
any plane, i[Tg(G)]>3, a contradiction.

Subcase 2.5. Suppose G has a triangle
together with paths P,(n>2) incident at different
vertices. Suppose three paths as P3 which are
incident at different vertices. Then in Tp(G)
each P; forms triangle and a triangle of G forms
a subgraph as Ky. The edges ei € E [Ts(G)]
which are incident to the blocks vertices of
paths of G generates the inner vertex number

of Tr(G) as i[T(G)]>3, a contradiction.

Subcase 2.6. Suppose G is exactly
one cycle C,(n>3) together with a path P(n>2)
incident at a vertex of a cycle. Then we
consider following subcases of subcase 2.6.

Subcase 2.6.1. Assume G is a Cs as
a block B, together with a path Py(n>2)
incident at a vertex. Then in Tg(G) block vertex
b corresponds to C3 is adjacent to every vertex
of B. Thus i[T(C3)]=1. The remaining blocks
of G gives a triangle as subgraph in Tp(G).
Thus i[Ts(Py)] = 0. Hence i[Tp(G)]<3, a
contradiction.

Subcase 2.6.2. Assume G is a cycle
C4together with a path P,(n>2) incident at a
vertex. Then in planar embedding of Tg(G), it
is easy to see that i[Tg(G)]=2. Hence
i[Tg(G)]<3, a contradiction.

Subcase 2.6.3. Assume G has a
cycle Cg as a block B, together with a path
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P,(n>2) incident at a vertex. Then in Tg(G) block
vertex b which corresponds to Csis adjacent
to every vertex of B. Thus i[Ts(Cs)]>3. The
remaining blocks of G forms in T(G) gives as
outer planar induced subgraphs. Thus
i[Ta(P,)]=0. Hence, i [Ts(G)]>3, a contradiction.

Subcase 2.7. Suppose G is a cycle
Ca(n>4) together with two paths Pp, and Py
(m>1, n>1) adjoined at two vertices of a C,
(n>4). Then we consider the following
subcases of subcase 2.7.

Subcase 2.7.1. Assume G is a Cy4
together with two paths P, and P, (m>1, n>1)
adjoined at two consecutive vertices. Then by
Theorem A of condition (3), i[Ts(G)]=2.
Hence, i[Tp(G)]<3, a contradiction.

Subcase 2.7.2. Assume G is a C, as

a block B together with two paths Py, and P,
(m>1, n>1) adjoined at two alternate vertices.
Then in Tp(G) the block vertex b which
corresponds to B is adjacent to every vertex
of B and adjacent block vertices of the paths

in Tg(G). In any planar embedding i[Tp(G)]>3,
a contradiction.

Subcase 2.7.3. Assume G has a
cycle Cs together with two paths Py, and Py
(m>1, n>1) adjoined at two alternate vertices
of Cs. Then it is easy to see that i[Tg(G)]>3 in
any planar embedding of Tg(G), a contradic-
tion.

Subcase 2.8. Suppose G is a cycle
of length C,(n>5) together with two diagonal
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edges joining a pair of vertices. Then we
consider the following subcases of subcase
2.8.

Subcase 2.8.1. Assume two diagonal
edges joining a pair of vertices of length exactly

three. Let B be a block of a C,, (n>5). Then in
Tg(G)block vertex b corresponds to C, is adjacent
to every vertex of B. In planar embedding of
Tp(G) in any plane we have i[Tg(G)]=5.
Hence, i[Ts(G)]>3, a contradiction.

Subcase 2.8.2. Assume two diagonal
edges joining a pair of vertices of length two
and three from same vertex to two alternate

vertices. Then in planar embedding of TL(G)
it is easy to see that i[Ts(G)]=4. Hence,
i[Ts(G)]>3, a contradiction.

Subcase 2.8.3. Assume two diagonal
edges joining a pair of vertices of length exactly
three from same vertex to two consecutive
vertices. Then in planar embedding of Tg(G),
the four vertices of a cycle C, and block vertex
b corresponding to cycle C, are the only five
inner vertices in Tg(G). Thus i[Ts(G)]=5.
Hence, i[Tp(G)]>3, a contradiction.

Subcase 2.9. Suppose G is a cycle
C, (n=6) as a block together with a diagonal
edge joining a pair of vertices. Then we I. ve
following subcases of subcase 2.9.

Subcase 2.9.1. Assume a diagonal
edge joining a pair of vertices of length exactly
three. Then G contains one more cycle C', as
ablock. Clearly i[Tg(G)]>3, a contradiction.
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Subcase 2.9.2. Assume a diagonal
edge joining a pair of vertices of length four.
Then i[Ts(G)]>3, a contradiction.

Subcase 2.9.3. Assume a diagonal
edge joining a pair of vertices of length two.
Then i{Ts(G)]<3, a contradiction.

Conversely, suppose (1) holds. Then
G has exactly 3 cycles and each cycle is a
block, such that every cut vertex of G lies on
atmost two blocks and each triangle has atleast
one vertex of degree two. Then by Theorem
D, Ts(G) has exactly three wheels as blocks.
We know that every wheel is a minimally
nonouterplaner. Hence, i[Tg(G)]=3.

Suppose (2) holds. Then G has cycles
Cqand C; as blocks. We have following cases.

Case 1. Assume the cycle C4and Cs
have a vertex in common. Let cycle Cy4 as
vertices {vi, V2, v3, v4} cycle Cs as vertices
{Vv4, Vs, V¢} in which v, is a cut vertex incident
to both C; and C,4. Then in Tp(G) the block
vertex by and corresponding vertices of cycle
C4 are mutually adjacent in the exterior region
of a cycle C4. Thus, vertices v; and v, of a
cycle Cy are only two inner vertices in Tp(G).
Similarly the block vertex b, and corresponding
vertices of a cycle Cs are mutually adjacent in
the exterior region of a cycle Cs. Thus, vertex
ve of a cycle Cs is only one inner vertex in
Tg(G). Hence, Tp(G) has three inner vertices.
Thus i[Ts(G)]=3. This proves (2).

Case 2. Assume the path P;(n>2) in
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between the cycles C4 and C;. Let cycle Cy as
vertices {v1, 2, v3, va} and cycle Cs as vertices
{V'4, vs, Ve} and path P, as vertices Pr= {p1, p2,
...-.Pn-1> P} With out lose of generality let us
assume that vertex v; of cycle Cy4 is coincide
with vertex p; of path P, and similarly vertex v's
of cycle C; coincide with vertex P, of path Pp.
Letb,b’and by, by,...... b,,.1 are the block vertices
corresponds to cycle C4, C3 and path Py
respectively. Then in Tp(G) the block vertex b

and corresponding vertices of cycle C4 are
embedded in a plane in such a way that they are
mutually adjacent in the exterior region of acycle

Cs. Thus, vertices vy, v» of a cycle Cy4 are only
two inner vertices in Tg(G). Similarly block vertex
b’ and corresponding vertices of cycle Cs are
mutually adjacent in the exterior region of acycle
Cs. This forms K4 as a subgraph in Tg(G). Thus,
vertex vs is only one inner vertex in Tp(G). The
block vertices by, by,....... by.1 are also adjacent
to the corresponding vertices of path P,. This
forms triangles in Tg(G). Here Tg(G) is outer
planar. Thus Tp(G) has exactly three inner
vertices as v, vz, from cycle C4 and ve from
cycle Cs. Hence, i[Tg(G)]=3. This proves (2).

Suppose (3) holds. Let G is a triangle
with vertices {vy, vz, v3}, path Py, with vertices
{P1,P2s+v---+ Pm-1, Pm} and path P, with vertices
{p'1, P'2seeeee-- P'n-1, P'n}, With out lose of
generality let us assume that paths Pr, and Py,
are incident at vertex vy of a triangle. Then
vertex v; of a triangle, vertex p; of path Pp
and vertex p’; of path P, are coincide. Clearly
(G-vy) has disjoint paths. Then by Theorem
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C. Tg(G-v) is outerplanar. Let b be the block
vertex corresponding to a triangle, b’y b's,.....
b’ are the block vertices corresponding to a
path Py, and b"'y, b"2,eeecnnennnnnnn. b'n.q are
the block vertices corresponding to a path Py
Then in Tg(G) block vertex b corresponding
vertices of a triangle are mutually adjacent.
Then Tg(C3) is isomorphic to a wheel. The
block vertices by, b'a,...... b'm.1 and corres-
ponding vertices {pi, p2,--.--- Pm-1, Pm} Of @
path Pm forms V1p2b'1, P2 p3b'2, p3p4b'3,. veer Pm-1
Pm b'm.1 as triangles as an induced subgraphs
in Tg[G]. Similarly path P, forms vip’2b"1, p"
p'3b’a...... p'n1 P'n b"'na1 as triangles as an
induced sub graphs in Tg(G). The vertices, v2,
v3 of a triangle and corresponding block vertex
b are only three inner vertices in Tg(G) in any
planar embedding. Hence i[Ts(G)]=3. This
proves (3).

Suppose (4) holds. Let G is a triangle
with vertices {vi, v2, v3}, path Py, with vertices
{P15 P2sereeren Pm-1> Pm}, path P, with vertices
A P2 e s p'n-1, p'n} and path P, with
vertices {x, x}. Without lose of generality let
us assume that paths Py, P, and P are incident
at vi, va, v3 respectively. Then the vertices
vi=p1, v2=p’1 and v3=x;. Let b be the block
vertex corresponding to a triangle, b'y, b'a,.....
b1 are the block vertices corresponding to a
path Py, b1, b"'2,........ b1 are the block
vertices corresponding to a path P,and b'is a
block vertex corresponding to a path P,. Then
in Tg(G) block vertex b corresponding vertices
of a triangle are mutually adjacent. Then
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Tg(C3) is isomorphic to a wheel. The block
vertices b'y, b's,... b'm. and corresponding
vertices {p1, Pz,-.. Pm-1, Pm} of a path P, forms
lezb'1, p2p3b'2, p3p4b'3, ....... Pm-1 pmb’m.1 as
triangles as an induced subgraphs in Tg(G).
Similarly path P, forms vap'sb"y, p,p’,
bl ! P'n-1p'n b''ny as triangles as an
induced subgraphs in Tp(G) and also path P,
and corresponding block vertex b’ form vix,b’
as a triangle as an induced subgraphs in T(G).
The vertex v; of a triangle, vertex x; of a path
P; and corresponding block vertex b’ of a path
P, are exactly three inner vertices in Tg(G) in
any planar embedding.

Hence, i[T(G)]=3.
This proves (4).

Suppose (5) holds. Let G is a cycle
Csas a block B, with vertices {vy, va, v3, V4,
vs} and path P, with vertices {py, ps,....... Pn}-
With out lose of generality let us assume that
path Py, is incident at vertex v, of a cycle Cs.
Thus vertex vi=p;. Clearly (G-v) has disjoint
paths. Then by Theorem C, Tp(G-v;) is outer
planar. Let b be a block vertex corresponding
to a cycle Cs and by, bs,...... by.1 are block
vertices corresponding to a path P,. Then in
Tp(G) block vertex b corresponding to a cycle
Cs mutually adjacent to every vertex of B.
Then Tg(Cs) is isomorphic to a wheel. The
block vertices by, by,... b,.; and corresponding
vertices {p1, p2,...pn} of a path P, forms v;pyby,
P2pP3b2, P3pabs,... Pr.iPaby. triangles in Tp(G),
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as an induced subgraph in Tg(G). The vertices
v2, v3 and v4 of a cycle Cs are only three inner
vertices in Tg(G) in any planar embedding.
Hence, Tp(G) is a 3-minimally nonouterplanar.
This proves (5).

Suppose that (6) holds. Let G is a cycle
Cs with vertices {vy, v2, V3, Va4, Vs }, path P, with
vertices {p; pz, ...... Pm-1 Pm} and path P, with
vertices {p’1 p'2, --... pP'n1 P'n}, Without lose of
generality let us assume that paths P, and P,
incident at vertex v; and vs respectively. Thus,
vertex p;=v; and vertex p’; = vs. Cleai*ly (G-v)
or (G-vs) has disjoint paths. Then by Theorem
C, Ts(G-v;) or Tg(G-vs) is outer planar. Let b
be the block vertex corresponding to a cycle Cs,
b';, b'y,
corresponding to a path Py, and b”, b", ......

..... b'm.1 are the block vertices

b”51 are the block vertices corresponding to a
path P,. Then in Tg(G) block vertex b
corresponding vertices of cycle C, are mutually
adjacent. Then Tg(Cs) is isomorphic to a wheel.
The block vertices by, b'y, ...
corresponding vertices {p1, p2, ... Pm-1, Pm} of 2

b'm-1 and

path Pm forms V1p2b'1 5 p2p3b'2, p3p4b'3, ..........
Pm-1 Pm b'm.1 as triangles as an induced subgraphs
in Tp(G). Similarly path P, forms vsp'sb”y,
p'2p"3b"2,....p"n1p'nb v as triangles as an
induced subgraphs in Tg(G). The vertices
V2, v3, v4 of a cycle Cs are only three inner vertices
in Tg(G) in any planar embedding. Hence
i[Ts(G)]=3. This proves (6).

Assume that (7) holds G has a cycle
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Cn(n>5) as a block together with two diagonal
edges.

We have the following cases.

Case 1. Assume a cycle Cg with
vertices {V|, V2, V3, V4, Vs, Vs} together with
two diagonal edges adjoined at vy, v3, and vy,
ve. Clearly (G-vi) is a path. Let b be a block
vertex corresponding to a cycle Cs. Then in
Ts(G) block vertex b is adjacent to every vertex
of a cycle Cg. Then vy and v3 are joined in the
outer region of a cycle Cs. Then vertex v,
becomes inner vertex. Similarly vertices v4and
vg are also joined in the outer region of a cycle
Cs. Then vertex vs becomes inner vertex in
Tg(G). But block vertex b is adjacent to every
vertex of a cycle Cg. This forms a wheel in
Tg(G). Thus, vertices v, vs of a cycle C¢ and
block vertex b are only three inner vertices in
Tg(G). Hence, Tp(G) is a 3-minimally nono-
uterplanar.

Case 2. Assume a cycle Cs with
vertices {v1, v, V3, V4, Vs} together with two
diagonal edges adjoined at vy, vs, and vy, V4.
Clearly (G-v1) is a path. Then by Theorem C.
Tg(G-v)) is outer planar. Let b be the block
vertex corresponding to a cycle Cs. Then in
Tg(G) block vertex b is adjacent to every vertex
of a cycle Cs. Then vertices v; and vj are
joined in the outer region of a cycle Cs. Then

vertex v, becomes inner vertex. Similarly
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vertices v; and v, are joined in the outer region
of a cycle Cs. Then vertex v3 becomes inner
vertex. In Tg(G) the block vertex b is adjacent
to every vertex of a cycle Cs. This forms a
wheel in Tg(G). Thus, vertices v, v3 of a cycle
Cs and block vertex b are only three inner
vertices in Tg(G). Hence, i[T(G)]=3. This
proves (7).

Suppose (8) holds. Then G has a cycle
Can(n>6) with vertices vy, V2, V3, V4yeen.nee Vi
such that e=vivn is an edge joining the two
distinct vertices of C,,. Then G has two cycles
Vi, V2, V3, Vp, Vi and v3, Va4, ...... Vp, V3. Since G
is a block let b be a block vertex of G In Tg(G),
the block vertex b and all vertices of C, (n>6)
are adjacent. Further, in planar embedding of
Tg(G), the edge e=v3vn drawn in such a way
that the vertices v;, v, and b lie in the interior
region of G, which gives i[T(G)]=3.

This completes the proof.
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