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Abstract

In this paper, we obtain characterizations of graphs whose
semitotal-block graphs and total-block graphs are 3-minimally
nonouterplanar.

1. Introduction

fn3, Kulli introduced the concepts of
the semitotal-block graphs and total-block
graphs. Ina and 5, the planarity and outer
planarity ofthese graph valued functions were

discussed. In6, one finds the minimally nonouter

planarity ofthese graph valued functions. Inl,
D.G Akka and M.S. Patil finds the 2-minimally
non-outer planarity of these graph valued
functions. In this paper, we obtain the
characterizations of graphs whose semitotal-
block graphs and total-block graphs are 3-
minimally nonouterplanar.

The following definitions will be noted

for later use. A graph G is called a block if it
has more than one vertex. is connected and
has no cutertices.

A block of a graph G is a maximal
subgraph of G which itself a block.
If B: {ur, u2,... ....u,. r>2} is a block

of Q then we say that vertex u1 and block B

are incident with each other as are u2and B

so on. If two distinct blocks 81 and B2 are

incident with a common cutvertex, then they
are adjacent blocks. The vertices and blocks
of a graph are called the members.
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The following will be usefirl in the proof

of our results.

Lemma 16. Forthe graph K1,3, i[T(Kr,r)]:2.

Theorem A1. The total block graPh

Te(G) ofa connected outer planar graph G is

2-minimally nonouterplanar if and only if
1) G is a path Pn, n)3 together with an end

edge adjoined at some non-end vertex

or

2) G is a path Pn, n)2 together with two vertices

each adjoined to a pair ofadjacent vertices

of Pn

or
3) G is a cycle of length 4 together with two

paths P' and Pn (m>1, n>2) adjoined at

two consecutive vertices
or

4) G is a cycle Cn, n24 with a diagonal edge

joining a pair of vertices of length exactly

2.

Theorem.Ala. fne total block graph

Te(G) ofa graph G is planar if and only ifG is
outer planar and every cutvertex ofG lies on

at most 3 blocks.

Theorem C. the total block graPh

Ts(G) of a graph G is outer planar if and only

if each component of G is a Path.

Theorem D6. AgraPh G is a cYcle if
and only if the semitotal - block graph and

total-block graph are isomorphic to a wheel.

Theorem E.ftretotal graPh T (G) of
a graph G is planar if and only ifthe maximum

degree among the vertices of G is atmost 3
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and every vertex ofdegree 3 is a cutvertex.

Theorem F3. A connected graph G is

atree if and only ifthe graph T(G) and Ts(G)

are isomorphic.

2. Main Results:

A criterion for the semitotal block
graph of a connected graph G to be 3-minimally
nonouterplanar is given in the following
theorem.

Theorem /. The semitotalblockgaph

Tr(G) of a connected graph G is 3-minimally
nonouterplanar ifand only if(1) or (2) holds.

l) G has exactly three cycles and each cycle

is ablock
or

2) G is a cycle C" (n>6) together with a
diagonal edge joinin g a pair of vertices

of length (n-3).

Proof. Suppose Tu(G) is 3-minimally

nonouterplanar. Then Tr(G) is planar'

We now consider the following cases.

Case L Assume G is a tree. Then

every block of T6(G) is a fiangle. Hence T5(G),

is outer planar, a contradiction.

Case 2. Assume G is not a tree'

We consider the following subcases

ofcase 2.

Subcase 2./. Suppose G has four
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is a block. Then each block and corresponding

block vertices forms wheel in T6(G). Hence,

i[Tr(G)]3, a contradiction.

Subcase 2.3.2. Assume G has two
cycle as a block. Then we consider the followin s
subcases of subcase 2.3.2.

Subcase 2.3.2.f. Suppose G is
isomorphic to K+-x. Then i[T6(G)]<3, a

contradiction.

Subcase 2.3.2.2. Suppose a vertex
of IQ-x is adjacent to some blocks. Then the

block vertex b corresponds to K+-x is adjacent

to all vertices of K+-x.In embedding T6(G) in

any plane, we have i[Tb(G)<2, a contradiction.

Subcase 2.3.2.3. Suppose two vertices

of IQ-x are adjacent to some blocks. Then

the block vertex b corresponds to (IQ-x) is

adjacent to all vertices of K+-x. In embedding

T(G) in any plane, we have i[T6(G)]<3, a

contradiction.

Subcase 2.3.2.4. Suppose three
vertices of (IQ-x) are adjacent to atleast one

block. Then in T6(G) the edges joining the block

vertex of Ka-x and all vertices of Kl-x
generates the planar representation such that
the blockvertices ofblocks which are adjacent

to three vertices oflQ-x lies in the interior region

of T6(G) with i[T6(G)] >3, a contradiction.

Subcase 2.3.2.5. Suppose each vertex

of IQ-x is adjacent to atleast one block. Then

the block vertex b corresponds to (IQ-x) is adjacent

tc all'.'ertices of (fu-x). In plane embedding

cycles. Then we have following subcases of
subcase 2.1.

Subcase 2.1.1. Assume each cycle

is a block. Then each cycle in Tb(G) gives a

wheel. Hence, i [Tb(G)]>3, a contradiction.

Subcase 2.1.2. Assnme G has two

cycles C1 and C2 as blocks. Then the remaining

block is isomorphic to IQ-x In T5(G), Cr and

C2 gives wheels as W1 and W2, where as

i(IQ-x;:2. Thus, i[T6(G)]>3, a contradiction.

Subcase 2./.3. Assume G has two

cycles Cr and C2 as blocks, which are

isomorphic to (IQ-x). Then in T6(G) i(Ka-xf2.
Hence, i [T6(G)]3, a contradiction.

Subcase 2.1.4. Assume G has four
cycles as a block B, and remaining blocks are

edges of G. Thus, G is a maximal outer planar

graph with 6 vertices. In Tr(G) the block
vertex b is adjacent with each vertex of B.

Thus i[Tu(G)]>3, a contradiction.

Subcase 2.2. Suppose G has three

cycles. Then there exists two blocks Br and

82 in which one block 81 is a cycle and 82 is

isomorphic to K+-x such that atleast three

vertices of IQ-x are adjacent to atleast one

block. In embedding of T6(G), i[T6@ 1)]= I and

i[t6@2)p2. Hence i[Tt(G)P3, a contradiction.

Subcase 2.3. Suppose G has two
cycles. Then we have subcases of subcase

2.3.

Subcase 2.3.1. Assume each cycle
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ofT6(G). We have i[T6(G)]>4, a contradiction.

Subcase 2.r'. Suppose G is unicyclic
gaph. Then i[T6(G)]<3, a contradiction.

Case 3. Assume G is a cycles Cn
(D6). Then we have following subcases of
case 3.

Subcase 3./. Suppose G is a cycle
Cn (n>6) as abloclg with diagonal edgejoining
a pair of vertices of length (n-3). Then G
contains one more cycle C'n as a block, clearly

i[Tb(G)P3, a contradiction.

Subcase 3.2. Suppose G is a cycle
C, (D6) as a block, together with diagonal
edge joining a pair of vertices of length (n-4).

Then i[T6(G)]>3, a contradiction.

Subcase 3.3. Suppose G is a cycle
C"(n>6) as a block, together with diagonal
edge joining a pair of vertices of length (n-2).
Then i[T6(G)]<3, a contradiction.

Conversely, suppose (l) holds. Then
G has exactly 3 cycles and each cycle is a
block. By Theorem D, Tb(G) has exactly three
wheels as blocks. We know that every wheel
is a minimally nonouterplanar. Thus i[T5
(G)l:3.

Suppose (2) holds, now we can make

use of mathematical induction on n of cycle

Cn Suppose n:6. Then G is a cycle C6 with
the vertices {vtv2..........ve }, together with
diagonal edge x joining a pair of vertices v1

and va of length 3. So that G has two cycles
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C'a and C"4 with the vertices yt,y2,v3, v4, vl
and v1, v4, v5, v6, vl respectively. Since Cp, P)6
is a block, let b be a block vertex in T6(G)

which is adjacent to all the vertices ofCp, P>6.

In planar embedding of T6[C6]. It is easy to

see that the planar embedding of T6(G), either

v2, v3 of cycls C'4 of v5, v6 of cycle C"a together

with a block vertex b lie in the interiorregion

of planar embedding. Hence, Tu(G) is
3-minimally nonouterplanar. Assume that result

is true forn:k. Then G is a cycle of length C6
clearly Tu(G) is (K-3) -minimally nonouter-

planar.

Suppose n:k+l. Then G is a cycle of
length C1a1. Then we have to prove that T6(G)

is (k-2) - minimally nonouterplanar.

Let vr+r be vertex on a cycle Ct+r. If
we delete a vertex v1a1 from a cycle Cr,*r by

deleting the edges er:(vr+r, v1) and €k+t =
(v1a1, v1) which are incident with a vertexvlal,

resulting a cycle of length Cr. By inductive

hypothesis Tu(Cr) is (k-3) - minimally
nonouterplanar. Now rejoining a vertex v1a1

to a cycle Clby joining the edges €1a1 Brd €1,

resulting a cycle of length Cr+t. It has two

cycles Cl with the vertices yt, y2, v3, v4, v1,

and C'1with the vertices v t,y4,ys>......

vk, vk+I, v1. In T6[Cr+t] the block vertex b

corresponds to Cr+r is adjacent to all the

vertices of Cp1. Such that y2, y3, b lies in the

interior region of planar embedding.
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Hence, Tr(c) has [(k+1)-3]:(k-2) minimally
nonoutelplanar.

Hence the proof.

In the following theorem, we establish
a criterion for the total - block graph of a
connected graph to be 3-minimally nonouter-
planar.

Theorem 2. The total - block graph

Ts(G) of a connected outer planar graph G is
3-minimally nonouterplanar if and only if.

l) G has exactly three triangles as blocks, such
that atmost two blocks lie on a common
cut verte>r.

or

2) Ghas exactlytwo cycles C3 and Ca as blocks,

or

3) G is a triangle together with two paths P,o

and Pn (m2' n>2) incident at a same vertex,
or

4) G is a triangle together with paths Pr, Pn

(m>2, n>2) and P2 incident at different
vertices,

5) G is a cycle C5 together with a path Pn,

(n>2) incident to a vertex of C5,

or

6) G is a cycle C5 together with two paths P'o

and Pn (m>1, n21) adjoined at two consecutive

vertices,
or

7) G is a cycle of length Cn(n>S) together with
two diagonal edges eachjoining a pair of
vertices of length exactly two or together
with two diagonal edges each joining a pair
of vertices of length two and three which

are adjacent,
or

8) G is a cycle of length Cn(t6) together with
a diagonal edge joining a pair ofvertices of
length exactly 3.

Proof. Suppose Ts(G) is 3-minimally
nonouterplanar. Then Ts(G) is planar.

We now consider the following cases.

' 
Cose.l. Assume G is a tree. Then by

Theorem R T(G) and Ts(G) are isomorphic
and hence by Theorem E, G has maximum
degree atmost 3 and every vertex ofdegree 3

is a cut vertex.

We consider subcases of case 1.

Subcase 1.1. Suppose G has atleast

two cut vertices of degree 3. Then G has two
subgraphs which are isomorphic to K1p. Then

by Lemma l, i[T(K1,3)]:2. Since T(Kr,:):
Tn(Kr,:), i[Ts(K1,3)]:2, Since Ts (K1,3) c
Ts(G), i[TB(G)]>3, a contradiction.

Subcase 1.2. Suppose G has a vertex
v lies on 3 blocks and each block has no end

vertex. Then G has a subgraph isomorphic to
S (Kr,r). On planar embedding of Ts(G),
ilTB(S(KrJ))l >4. Since S(Kr,:) is a subgraph

ofQ i[Ts(G)] >4, acontradiction.

Subcase 1.3. Suppose G has a vertex
v lies on 3-blocks in which atleast one block
has an end vertex ofG. Then by condition (l)
of Theorem A, TB(G) is a 2-minimally
ncncutelplanar, a contradiction.
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Case 2. Assume G is not a tree.

We consider the following subcases

ofcase (2).

Subcase 2./. Suppose G has three

cycles. Then we have the following subcases

of subcase 2.1.

Subcase 2./.1. Assume G has three

cycles, in which two cycles are C3 and other

cycle is Cn(D4).In Ts(G), each C: gives IQ.

Then i(IQ) : l. For the cycle Cn(n>4), i(Cn)

>2. Hence, i[TB(G)]>3, a contradiction'

Subcase 2.1.2. Assume G has three

cycles Cr as blocks and these three blocks lie

on a common cut vertex. Then in Ts(G), each

cycle C3 and corresponding block vertex forms

IQ as a subgraph. But in Ts(G) the three block

vertices of cycles are mutually adjacent.
Further the edges joining the block vertices of
C3 increases the inner vertex number in a planar

embedding. Hence, dTs(G)p3., a contadiction.

Subcase 2.2. Suppose G has four

cycles Cr as blocks. Then we have subcases

of subcase 2.2.

Subcase 2.2.1. Assttme G has four

cycles Cr as blocks, such that each two C3 lie

on a common cut vertex. The block vertices

corresponds to cycles Cg and corresponding

vertices of cycles C3 are adjacent in Ts(G). Then

each cycle Cg forms Ka as subgraphs in Ts(G).

Since, the blockvertices are adjacent in Ts(G)'

Then the edges joining these three vertices
generates the increase in the inner vertex
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number. Thus, i[Ts(G)]>3, a contradiction.

Subcase 2.2.2. Assume there exists

a bridge between the cycles Cl. In Ts(G) each

cycle C3 forms IQ and bridges form triangles

as subgraphs. In Ts(G) the block vertices are

also adjacent. Thus, i[Te(Gp3, a contradiction.

Subcase 2.3. Suppose G has two

cycles, C"(n>3). Then we consider following
subcases of subcase 2.3.

Subcase 2.-3.1. Assume G has cycles

C3, os blocks Br and 82. Then in Te(G) the

blockvertices br and b2 coresponds to Br and

Bz, which are adjacent to every vertex of Br

and 82. Also block vertices br and b2 arc

adjacent in Tn(G). Hence, in K+ is an induced

subgraph in Ts(G). Clearly i[Ts(G)]<3, a
contradiction.

Subcase 2.3.2. Assume G has exactly

two cycles C+ as a block. Then in Ts(G), each

C+ has i[TB(C4)]:2. Since each Ts(Ca) is an

induced subgraph of Ts(G). Then i[Ts(G)]>3,
a contradiction.

Subcase 2.3.3. Assume G has C3 and

Cs as blocks. Then in planar embedding of
Ts(G), i[Ts(C3)]:l and i[Ts(C5)]:3. Thus

i[TB(G)P3, a contradiction.

Subcase 2.-3.4. Assume G has Cq and

Csas blocks. Then by subcase 2'3.2 and

subcase 2.3.3, i[TB(G)]>3, a contradiction.

Subcase 2.4. Suppose G has a triangle
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together with 3 paths Pn(n)2) incident at a

unique vertex. Suppose each path is oflength

atmost two. Then in depicting the Ts(G) in

any plane, i[TB(G)]>3, a contradiction.

Subcase 2.5. Suppose G has a triangle

together with paths Pn(n>2) incident at different

vertices. Suppose three paths as Pr which are

incident at different vertices. Then in Tn(G)

each P3 forms hiangle and a triangle of G forms

a subgraph as K4. The edges ei e E [Ts(G)]
which are incident to the blocks vertices of
paths of G generates the inner vertex number

of Te(G) as i[Te(G)]>3, a contradiction.

Subcase 2.6. Suppose G is exactlY

one cycle Cn(D3) together with a path Pn(n>2)

incident at a vertex of a cycle. Then we

consider following subcases of subcase 2.6.

Subcase 2.6./. Assume G is a C3 as

a block B, together with a path Pn(n>2)

incident at a vertex. Then in Te(G) block vertex

b corresponds to C3 is adjacent to every vertex

ofB. Thus i[Ts(C3)]:1. The remainingblocks

of G gives a triangle as subgraph in Ts(G).

Thus i[Ts(Pn)] : 0. Hence i[Ts(G)]<3, a

contradiction.

Subcase 2.6.2. Assume G is a cYcle

Catogether with a path Pn(n>2) incident at a

vertex. Then in planar embedding of Ts(G), it

is easy to see that i[Ts(G)]:2. Hence

i[TB(G)]<3, a contradiction.

Subcase 2.6.3. Assume G has a
cycle C6 as a block B, together with a path

P,(D2) incident at a vertex. Then in Ts(G) block

vertex b which corresponds to Co is adjacent

to every vertex of B. Thus i[Ts(C6)]>3. The

remainingblocks ofG forms in Ts(G) gives as

outer planar induced subgraphs. Thus

i[s(P"):0. Hence, i [ts(G)]3, a conffadiction.

Subcase 2.7. Suppose G is a cYcle

Cn(n24) together with two paths P' and Pn

(m)1, n>1) adjoined at two vertices of a Cn

(n>4). Then we consider the following
subcases of subcase 2.7.

Subcase 2.7.1. Assume G is a C+

togetherwithtwo paths Pn, and Pn (m>1, n>l)
adjoined attwo consecutive vertices. Then by

Theorem A of condition (3), i[TB(G)]:2.

Hence, i[TB(G)]<3, a contradiction.

Subcase 2.7.2. Assume G is a C4 as

a block B together with two paths P. and Pn

(m>1, n>1) adjoined at two alternate vertices.

Then in Ts(G) the block vertex b which
corresponds to B is adjacent to every vertex

ofB and adjacent block vertices ofthe paths

in Ts(G). In any planar embedding i[TB(G)P3,

a contradiction.

Subcase 2.7.3. Assume G has a

cycle C5 together with trvo paths P,n and Pn

(m>1, n>1) adjoined at two alternate vertices

of Cs. Then it is easy to see that i[Ts(G)]>3 in

any planar embedding of Ts(G), a contradic-

tion.

Subcase 2.8. SuPPose G is a cYcle

of length C,(n>5) together with two diagonal
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edges joining a pair of vertices. Then we
consider the following subcases of subcase
2.8.

Subcase 2.8./. Assume two diagonal
edgesjoining a pair of vertices of length exactly

three. Let B be a block of a C, (n>5). Then in
Ts(G) block vertex b conesponds to Cn is adjacent
to every vertex of B. In planar embedding of
Ts(G) in any plane we have i[Ts(G)]=5.
Hence, i[TB(G)P3, a contradiction.

Subcase 2.8.2. Assume two diagonal
edges joinin g a pafu of vertices of length two
and three from same vertex to trvo alternate
vertices. Then in planar embedding of T"(G)
it is easy to see that i[Ts(G)]:4. Hence,
i[TB(G)]>3, a contradiction.

Subcase 2.8.3. Assume two diagonal
edgesjoining a pair ofvertices of length exactly

three from same vertex to two consecutive

vertices. Then in planar embedding of Ts(G),
the fourvertices ofa cycle Cn and blockvertex

b corresponding to cycle Cn are the only five
inner vertices in Ts(G). Thus i[TB(G)]=5.
Hence, i[TB(G)]>3, a contradiction.

Subcase 2.9. Suppose G is a cycle
Cn (n>6) as a block together rvith a diagonal
edge joining a pair of vertices. Then rve l, , r,e

following subcases of subcase 2.9.

Subcase 2.9.1. Assume a diagonal
edge joining a pair ofvertices of length exactly
three. Then G contains one more cycle C'n as

a block. Clearly i[TB(G)]>3, a contradiction.
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Subcase 2.9.2. Assume a diagonal
edge joining a pair of vertices of length four.
Then i[Ts(G)]>3, a contradiction.

Subcase 2.9.3. Assume a diagonal
edge joining a pair of vertices of length two.
Then i[Ts(G)]<3, a contradiction.

Conversely, suppose (1) holds. Then
G has exactly 3 cycles and each cycle is a
block, such that every cut vertex ofG lies on
atmost two blocks and each triangle has atleast
one vertex of degree two. Then by Theorem
D, TB(G) has exactly three wheels as blocks.
We know that every wheel is a minimally
nonouterplaner. Hence, i[Ts(G)]:3.

Suppose (2) holds. Then G has cycles
Ca and C3 as blocks. We have following cases.

Case l. Assume the cycle Ca and C3

have a vertex in common. Let cycle Ca as

vertices {vr, vz, v:, v+} cycle C3 as vertices

{v+, vs, v6} in which v4 is a cut vertex incident
to both C3 and Ca. Then in Ts(G) the block
vertex b1 and corresponding vertices ofcycle
Caare mutually adjacent in the exteriorregion
of a cycle Ca. Thus, vertices v1 and v2 of a
cycle Ca are only two inner vertices in Ts(G).
S irrilarly the block vertex b2 and corresponding

vertices of a cycle C3 are mutually adjacent in
the exterior region of a cycle C3. Thus, vertex
v6 of a cycle C3 is only one inner vertex in
Ts(G).Hence, Ts(G) has three innervertices.

Thus i[Ts(G)]:3. This proves (2).

Case 2. Assume the path Pn(n>2) in



3-MinimallyNonouterplanar Graphs--Graphs and Total - Block Graphs. 253

C. Ts(G-vr) is outerplanar.Letb be the block

vertex corresponding to a triangle, b' t,b'2,. . ...

b'p-1 are the block vertices corresponding to a

path P. and bt't, b"2,... .'. b"1-1 are

the block vertices corresponding to a path Pn.

Then in Ts(G) block vertex b corresponding

vertices of a triangle are mutually adjacent.

Then Ts(C3) is isomorphic to a wheel. The

block vertices b'1, b'2,......b'.-l and corres-

ponding vertices {pr, p2,...... Pm-l, prn} of a

path P'n forms v1p2b'yp2ptb'2, prp+b'1,..... pm-r

p, b'.-1 as triangles as an induced subgraphs

in TB[G]. Similarly path Pn forms vsp'2b"1, p'2

p'3b"2,'.....Ptn-l pt1 b"n-l as triangles as an

induced sub graphs in Ts(G). The vertices, v2,

v3 of atriangle and corresponding blockvertex

b are only three inner vertices in Tn(G) in any

planar embedding. Henoe i[Ts(G)]:3' This

proves (3).

Suppose (4) holds. Let G is a triangle

with vertices {vr, v2, v3 } , path P. with vertices

{pt, p2,"""'Pm-l, p11}, path Pn with vertices

{p't,p'2,.......... p'n-I, p'n} and path P2 with

vertices {xr, xz}. Without lose of generality let

us assume that paths P'n, Pn and Pz are incident

at v1, v2, v3 respectively. Then the vertices

vl:pl, vz:p't and v3:x1. Let b be the block

vertex corresponding to a triangle, b' bb'2,.' ...

b'6-1 ote the block vertices corresponding to a

path P., b"1,b"2,........bt'n-l are the block

vertices corresponding to a path Pn and b'is a

block vertex corresponding to a path Pz. Then

in Ts(G) block vertex b corresponding vertices

of a triangle are mutually adjacent. Then

between the cycles Ca and C1. Let cycle C4 as

vertices {vt,vz,vr, v+} and cycle C3 as vertices

{v'4,vs,v6} and path Pn as vertices Pn : {pr, Pz,

.....Pn-I, p") with out lose of generality let us

assume that vertex v4 of cycle C+ is coincide

with vertex p1 of path Pn and similarly vertex v'+

of cycle Cr coincide with vertex Pn of path Pn.

Let b, b' and b 1,h'. . .. . . b6-1 are the block vertices

corresponds to cycle C+, Cz and path Pn

respectively. Then in Ts(G) the block vertex b

and corresponding vertices of cycle Ca are

embedded in a plane in such a way that they are

mutually adjacent in the exterior region of a cycle

C+. Thus, vertices v1, V2 of & cycle Ca are only

two innervertices in TB(G). Similarlyblockvertex

b' and corresponding vertices of cycle C3 are

mutually adjacent in the exterior region of a cycle

Cr. This forms K4 as a subgraph in Ts(G). Thus,

vertex vo is only one inner vertex in Ts(G). The

block vertices br, bz,. . . . . . .bn-r are also adjacent

to the corresponding vertices of path Pn. This

forms triangles in Ts(G). Here Ts(G) is outer

planar. Thus Ts(G) has exactly three inner

vertices 8S V1, v2, from cycle C+ and v6 from

cycle C3. Hence, i[Ts(G):3. This proves (2).

Suppose (3) holds. Let G is a triangle

withvertices {vr, v2, v3}, path P. rvithvertices

{pt, pz,' . . .. . Pm-I, pln} and path Pn with vertices

{p't, p'2,....". P'n-I, p'n}, with out lose of
generality let us assume that paths P, and Pn

are incident at vertex v1 of a triangle. Then

vertex v1 of a triangle, vertex p1 of path P-

and vertex p'r of path Pn are coincide. Clearly

(G-vr) has disjoint paths. Then by Theorem
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Ts(Cl) is isomorphic to a wheel. The block
vertices b't,b'2,... b',n-1 and corresponding
vertices {pr, p2,... pm-r, pm} ofa path Pn,, forms

vrPzb'r, pzptb' z, p:p+b'r,. . . . . . . pm-l p.b'--1 as

triangles as an induced subgraphs in Ts(G).
Similarly path Pn forms v2p'2b"1, pzp',
b"2,........ p'n-1p'n bt'n-1 as triangles as an

induced subgraphs in Ts(G) and also path P2

and corresponding block vertex b'form v3x2b'

as atriangle as an induced subgraphs in Ts(G).
The vertex v3 ofa triangle, vertex x2 ofa path

Pz and corresponding block vertex b'ofa path

Prare exactly three inner vertices in Ts(G) in
any planar embedding.

Hence, i[Ts(G)]=3.

This proves (4).

Suppose (5) holds. Let G is a cycle
C5 as a block B, with vertices {v1, v2, y3, y4,

v5) and path Pn with vertices {p1, p2,. . . . . . . pn}.

With out lose of generality let us assume that
path Pn is incident at vertex v1 of a cycle C5.

Thus vertex vl =pl. Clearly (G-vr) has disjoint
paths. Then by Theorem C, Ts(G-v1) is outer
planar. Let b be a block vertex corresponding

to a cycle C5 and bt,b2,...... bn-r are block
vertices corresponding to a path Pn. Then in
Ts(G) block vertexb correspondingto acycle
C5 mutually adjacent to every vertex of B.
Then Ts(C5) is isomorphic to a wheel. The

block vertices b1, b2,. . . bn-1 and corresponding

vertices {p r, pz,. . . pn } of a path P,, forms v1p2b1,

Pzp3b2,P:P+b:,. . . Pn-lPnbn-r triangles in Ts(G),

M. H. Muddebinal. et al.

as an induced subgraph in Ts(G). The vertices

v2, v3 &trd va of a cycle C5 are only three inner

vertices in Ts(G) in any planar embedding.

Hence, Ts(G) is a 3-minimally nonouterplanar.

This proves (5).

Suppose that (6) holds. Let G is a cycle

Cs with vertices {v1, v2,v3,vhv5}, path P. with
vertices {pr pz, ......pm-r pr} andpathPnwith

vertices {p't p'2,.....p'n-l p'n}, without lose of
generality let us assume that paths P, and Pn

incident at vertex v1 and v5 respectively. Thus,

vertex p1:v1 and vertex p'l : vs. Clearly (G-vr)

or (G-v5) has disjoint paths. Then by Theorem

C, Ts(G-v1) or Ts(G-v5) is outer planar. Let b
be the block vertex corresponding to a cycle C5,

b'1, b'2, ..... b'.-l are the block vertices
conesponding to a path P. and b" t,b" 2, ......
b"p1 are the block vertices corresponding to a
path Pn. Then in Ta(G) block vertex b

corresponding vertices of cycle C, are mutually

adjacent. Then Tn(Cs) is isomorphic to awheel.

The block vertices b'1, b'2, ... b'p-1 and

corresponding vertices {p t, pz,. . . pm-l, p'o } of a

pattr P, forms v1p2b'tpzpzb'z,ptptb,, .

pm-t pm b'm-r as tiangles as an induced subgraphs

in Ts(G). Similarly path Pn forms v5p'2b"1,

P'2P'3b"2r....p'n-lptnb"1-1 as triangles as an

induced subgraphs in Ts(G). The vertices
Y2,Y3,y 4 of zcycle C5 are only three innervertices

in Ts(G) in any planar embedding. Hence

i[Ts(G):3. This proves (6).

Assume that (7) holds G has a cycle
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vertices vr andv+ arejoined inthe outerregion

of a cycle Cs. Then vertex v3 becomes inner

vertex. In Tg(G) the block vertex b is adjacent

to every vertex of a cycle Cs' This forms a

wheel in Ts(G). Thus, vertic€s v2, V3 of a cycle

Cs and block vertex b are only three inner

vertices in Ts(G). Hence, i[Ts(G)]:3' This

proves (7).

Suppose (8) holds. Then G has a cycle

Cn(n>6) with vertices v1, v2, v3, v4,...'... vn

such that e:v3vn is an edge joining the two

distinctvertices of Cn. Then G has two cycles

Y 1,Y2,Y3rVn, V1 and V3 ,Y4, ' . .. . ' Vn, V3. SinCe G

is a block let b be a block vertex of G In Ts(G),

the block vertex b and all vertices of Cn (n>6)

are adjacent. Further, in planar embedding of

Ts(G), the edge e:v3vn drawn in such a way

that the vertices V1, v2 &nd b lie in the interior

region of Q which gives i[Ts(G)]=3.

This completes the Proof.
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