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Abstract

In this paper group semirings using distributive lattices as
semirings is studied. The condition on the distributive lattices as well as
on the groups are given for the group semiring to have zero divisors,
idempotents, S-zero divisors, S-anti zero divisors and S-idempotents.
This is the first time such analysis has been carried out on these group
semirings.
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I Introduction

fn this paper the study of group
semirings is made using finite or infinite
distributive lattices. Group rings and semigroup
rings have been studied by several authors.
Both these structures are only studied over
rings with unit or a field. In case of group rings
several researchers have studied about the
zero divisors, idempotents, units etc;3,4.
Likewise study of semigrouprings that is
semigroups over rings or fields have been
studied and also special elements like zero
divisors, units are analysed by several
researchers3,4. Howevers have studied
semirings and group semirings.

semirings are taken as distributive lattices is
carried out. This study is very new for group
semirings have been studied by researchers

very sparinglys. In this paper a systematic
study of this type is carried out. This paper
has four sections. Section one is introductory
in nature. SectiontWo studies group semirings
where semirings are chain lattices. Section
three introduces the new study of group
semirings by taking semirings which are
distributive lattices as well as Boolean
algebras. The conclusions are given in the
final section.

2 Group Semirings of Semirings which are
choin lattices and their Properties :

Inthis paper study ofgroup semigroups Throughout this section Cn will denote
where the groups over semirings wherc a chain lattice of length n and G will denote a
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group under multiplication. First for the sake

of completeness the definition of group
semiring is recalled.

Definition 2.1: Let S : C, be the
chain lattice, a semiring. G be any group.

The group semiring CnG : SG of the group

G over the semiring Cn ( : S) contains all
finite formal sums of the form

[.q ls, e S = ql
tht'r'lr, t o I; on which two

binary operations '+' (the union in the

Iattice C) and x (the n on the lattice Cr)
are defined on SG as follows.

gm
Let a =Zt,o, and P =Zr,o,where

i=l t=l

s;ri€Cn:SandaieG

m ornsr,: Z (sr v ri)di (which ever m or
i=l

n is greater)

nsr: Lm,d,(m, e cr: s).
i=l

ttsl sr:Z (.ti ori) dr= / Tpdp
k=l k=l

where d*: di di e G and Y, e S.

iii) For e : 1 e G (the identity of G)
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1x si: sixl: si for all si € Cn and sig :
ga;for all ge G

tt For I e Cn: S we have

I .9,: gi.l : gi for all gi e G
v) For 0 e Cn: S we have

0 . g, : gi . 0 : 0for all gi e G
vi) Further I - G e SG and,S./ _c SG

(Here 1 of G od I of C,:S is defined 1).

The identity element 1 of SG: CnG

SG is a semiring.

Some examples ofthe group semirings

is given in the following.

Example 2.7:

Ct:

0

be the semiring (chain semi lattice) and G:
( g I do : l) be the cyclic group of order 20.

CzG tre ttre group semiring ofthe group G over

the semiring C7.

Clearly number of elements in CzG is

finite so the group semiring is of finite order.

Since G is a commutative group so is the group

semiringCTG

L€t
rl

d2

83

u

nn,sr rr
i)a+p= Ls'd,+Lridi

,=l ,=l

ii) axp: it ,,',)"(; n",)
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Let
d = art * urg t aogi a, and I = arg, +

a4g:+ arg+1eCrG
a + p =(ar{ + \* t aog+ ar) + (qg? + aot

+a,g+ l)
= trg'+ (ar u a) d + \92 + (ar u ar)g

*arvl
= trg, + ar{ + art* a,g* I e SG

q x p =(ard + \8, * a.g * ar) x (arg7 + a.d
+a,g+ l)

- (a, A ar) d x E7 * (ar n ar) gt x gt +

(a. n a) Ex g7

+ (a5 
^ 

a) g? + (q n a) 96 x 96 + (a,

nao)E2xEu
+ (a4 

^ 
a)g x 96* (arna)96+ (a, 

^a,)g6xB
+ (a, n a,)g, x g+ (aona,)gx g + (a,

na,)g
+ (a2 

^ 
1) d+ (qn t;gr+ (an n l) g

*asnl
= q gt'+ urgn * ao g8 + arg7 + aogtz +

aog8+aog?tar{
I argT + arg3 + art + asg * ar{ +

arg2 + ao9* a,

= \gt' + ao9t" + qgo + aog8 + (arg7 *
aogT * arET)

+ (ard + ar{) I at E3 + (art + argr)

+ (arg + aog) + a5

= \gtt 4 aogt'+ arge + aog8 + argT +

argf + arg3 + arg2 + aogr a, e CrG

This is the way sum and product are
performed of the group semiring using the

semiring as the chain lattice Cn,

Example 2.2: Let G = Sr the permu-

tation group of degree three and S = C1e be
the chain lattice. SG be the goup semiring of
the group G over the semiring C16. Cleady order
of SG is finite but SG is non commutative.

G=s,-{(l '. l).,.',(i ; ;)'r'(! 1',).r,,

(l ? :)=*, (L i 1)=,,,(l ? ;)=,,]
be the aymmetrie group of degree three,

Let cr : a,p, * arp, * drp, t a, and F = arpo +

irpr* arp, * au e CoG = SSr.

a+F = (a,p, * &rp, * arpr+ ar) + (a8p4 * arp,
* arPr + au;

: srPs * orPo * (arP, + a2p,) * (arP, *
arp,)*(ar+a-r)

: B,p, * arpo + (a3 \-/ ar) pt + (a, \J ar)

P,*aruau
= orps * arpo * arpr* arp, * ao e SSs

?3

u

:

Oae

I

0
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Consider o x p

= (a,p, * orp, * trp, * ar) x (apo +

arPr+ arp, * au)

= (a, nar)ps x pn+(E rtar)p, xpo+
(a, n ar) p, x Po + (a, n ar) Po +
(a, n ar) ps x p, * (a, n ar) p, x p, +

(a, n ar) pr x pr + (a, n ar) pr*
(a, n ar) p, x p, + (a, n ar)p3 x p1 +

(a, A ar) p, t p, + (a, n a) p, *
(a, n ar) p, + (a, rr aJ ps + (a, a.) pr

+a7n.a6

= o, * &, pr* t, p, t a, pa+ arpr* ar.
| + arp4+ qp, * arp, * arp, * as.1

* &rp, * au p, * aupr* aepr* at
: (arv a, u ar) + (a, tJ ar) p, * (a, v

)e a, v aJpr + (a, u ar)pr

+ (a5 \J aJp5 + (a6 L/ a7) pr

: a3+ a2p2* urp.' * arpo * arp, + a"pr €

K. Jayshree, et al.

q)p, + (a5 \J a8)p2 + (au u ar)p5

* (a, r.-.r ar) po * (a6 U a7) p3

: a3+ a2pt* trpr* arpr* urpo* aup, e

SS,. II

Clearly I and tr are not equal so axp
+ pxcr forthis o, p € SS3, hence SS3 is anon
commutative group semiring of finite order.

The following proposition characterizes

the group semiring of a group G over the
semiring which is a chain lattice.

Proposition 2.1: Let C, be afinite
chain lattice. G be a group and CnG be the

group semiring of the group G over the

semiring, Cr.

CoG is acommutative group semiring
tf and only if G is a commutative group.

Proof: Given Cn is a chain lattice so

Cn is a commutative semiring. Let G be a

commutative group clearlythe group semiring

CoG is acommutative group semiring.

Suppose let CnG be a commutative

group semiring of the group G over the lattice

Cn. To prove G is a commutative group, it
enough to prove for every g, h e G; gh = hg.

Given SG is commutative let g, h e
SG (g h e G) then glr = hg as SG is commutative.
This is true for every g, h e G hence G is a
commutative group.

Next it is proved CnG is a finite group

semiring.

SSr'

Nowfindpxct,
= (arPo * azPr* arP, * a) x (a,P, *arP,

* arP, * ar)
: (a, A a,) pop, + (q n a,) prxpr*(a,

n ar) p,x p, * (a, n ar) p5 r-

(a, n ar)poxp3* (a, n ar) p: tp, t
(a, n ar) p, x Pr+ (a6 n a3) P3 +
(a, n ar) poxp, + (azlar) p, x p, +

(a, A ar) prx p, + (a6 n a2) pr +

(a, n ar) po* (arn a7) p3 + (a, n
q) P' + (au n ar)

: as . 1 + arpr* zrprl aups * aspr + a3.

l*asp+*
aJ, * a'p2+ a2ps* ai . I * aup, * aopo

+ qPr * arPr* a,

= (a, u a, \J a5 \J ar) + (ar\J a8 \J a6 \-,
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Proposition 2.2: Let Cn be a
semiring (chain lattice of order n) and G a
group. C"G be the group semiring. CnG is
of finite order if and only if G is a finite
group.

Proof, Giventhe group semiringCnG
is offinite order.

Clearly if G is not of finite order, since

G c CnG; CnG would be of infinite order.
Hence G must be a group of finite order.

Suppose G is a group offinite order
clearly CnG the group semiring will be of finite
order as Cn is a frnite semiring.

Now an example of group ring of
infinite order is given.

Example 2.3: Let G : R \ {0} be the
group of real numbers under product and Crs

be the semiring (chain lattice of order l5). C,G
be the group semiring. Clearly CnG is of infinite

order as R \ {0} is an infinite goup; so CnG is
of infinite order.

Cn : 0 I 4n-218n-l ( ... < ar < I bethe
chain lattice of order n.
Let

&: t, + a5 0.3 + anl20 * arr6.2
and

P: a, * a, 0.3 * u.,9 e C"G.

cr *F : drI tr 0.3 + an 120 * aro6.2* ar+ a,

0.3 r an9
: (a, u ar) + (a, u ar) 0.3 + an 120 +

aro 6.2 * &,, 9
: ?, * a, 0.3 + arl20 * aro6.2 * a,r9 e

C"G
G x p= (a, * a, 0.3 + a, I20 * aro6.2) x (ar-r

a, 0.3 + a,, 9)
: 8, A a, * (a, n ar) 0.3 * (an n a) 120

* (a,o 
^ a) 6.2 * (a, A a_8)0.3

+ (a5 
^ a8) (0.3 x 0.3) + (an n a*)

(120 x 0.3) + (a,o 
^ as) (6.2 x 0.3)

+ (a, n ar3) 9 + (a, n a,r) (0.3 x 9) +

1a, n a,r) (120 x 9) + (a,o a a,r) 6.2

x9.
: &r* dr 0.3 + ae l20I arc6.2 + ar0.3

*aax0.09+
ar36 + a,o 1.86 * urr9 r arr2.'l * a,
1080 + a,, 55.8

: a, * (a, u ar) 0.3 + anI20 * aro6.2 *
ar_0.09 t an3.6 +

a,o 1.86 4 urr9 + a,, 1080 r an2.7 -
a,, 55.8 e C"G

This isthe wayproduct is defined onthe infinite
group semiring.

There are several group semirings of
infinite order.

Justrecall all chain lattices are semifield.

For more about semifields refer5.

Theorem 2.1: Let Crbe the semiring
which is a semifeld G be a commutative goup.
C, G the group semiring is a semifield.

Proof: Given CnG is a commutative
group semiring.

Clearly if o, p e CnG; cr*p : 0 is possible
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onlywhena=0and9=0.

Forin Cn;a,* uj=0= aivaiifonlY
if a,= 0 = a, for

C":01tn_r1L*t1... <a, < l.

Further c x P = 0 is possible in C"G

only if cr = 0 and F = 0. For in Cn; ata-,= 0 =
a,n a,if and only if q = 0 or 

"i= 
0.

Thus CnG is a semifield.

Corollary 2,1: Let CnG be a grouP

semlrlng of a group C; tf G ls anon commu'

tatlve group then CnG ls a semidlvislon ring,

Proof: Since CnG has no zero divisors

andfor every o, I e CnG; o+ I : 0 implies cr

= 0 and p : 0. CnG is a semidivision ring as G

is anon commutative grouP.

Example 2.4: LetG - < B I g" : 1 >

be the cyclic goup of order 15. Cr6 be the

chain lattice of order 16. Cr6G be the goup
semiring ofthe group G overthe semiring Cru'

C,uG is a semifield of finite order.

Example 2.5 : LetG - < a"b I a2 : b7

: 1, bab = a ) be the dihedral group oforder
!4. Cz'be the semiring of order 27. CrrG is

the group semiring of finite order which is a

semidivisionring.

This proves that group semiring, CnG

where Cn is a chain lattice has no zero divisors.

This is in contrast with group rings for every

group ring of a finite group G over any field

finite or infrnite field has zero divisors.

Nextthe units and idempotents inCnG

K. Jayshree, et al.

are discussed in the following.

Cn, the chain lattice has only idempo-

tents and has no units.

Forany\y e CnwehavexnY= I
is not possible unless x = y: l.

So Cn has no units. Further every

element in Co is an idempotent as Cn as ain
a, = q for every ai e Cn as Cn is a is the chain

lattice.

Lr view of this the following theorcms

are proved.

Theorem 2.2: Let C, be the chain

lattice and G any group. The group semiring

CrG hasnno nontrivial zero divisors-

Proof: Follows from the fact CoG is

asemifield.

Theorem 2.3: Let CnG be the grouP

semiring. The only units oJCnG are I ' g:
gfor every g € G e C"G

Prwft Follows from the fact G c CnG

and every g € G has a unique inverse.

However if a e Cn \ { 1} then it not a unit only

an idempotent as Cn is a chain lattice.

ns-l
If cr=) cr;g1 theno2=lisimpo

i=l

ssible as CnG is proved to be a semifield so no

zero divisors to cancel ofor addto 1.

Hence the chain.
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However CnG has idempotents if G is
a group of finite order.

ExamPIe 2.6: LetG : < g I g!2 = 1 >
be the cyclic group oforder 12. C, be the chain
lattice. CnG be the group semiring. Consider
s=(1 +d)eG

a2 = (1 +gu)x(1 +96)
= (1*gu+86+gt2)
= lul+(1u1)g!
: 1*g6:Cf.

Thus cr is an idempotent in CnG Consider

9 :1*gr+{+gneC,G
p' =(l + g + {+gn) x (l +gr+d+go)

: I *93*gu+gn +gr+d+go
Et'+{ * gn + gt'+gt * gn* gt, + g, + gu

=l*93*Er1'gn (aslul:l)
=p.

Thus B is an idempotent. SimilarlyT=
I +gr + g8 e CnG. Clearly 72 = y is an
idempotentinC,G

Finally 6: I * g+ g2 ... + grr e CnG
is also an idempotent of C"G

Thus apart from all elements C_ as
Co c C,G 

"r" 
ulro idempotents of C"d as

qxq:oiAaforalla.eCn.

In view ofthis we have the followino
theorem.

Theorem 2.4: Let C, be the group
semiring of the group G offinite order over
the chain lattice Cn.

t) AII a e Cn; C,e C,G are idempotents

Of C,G
i, IfHteGis ofGandl!:

ft, h,, ..., h,] + h, + ,., i h,
e C,G is an of C,G This is
true for every subgroup of G

iii) If G: {1, gt, ..., g} then y: I }g, r g,
a...* g, e CnG is an idempotent of CnG

Proof: For every o e Cn it is clear o
x o = q, n a is an idempotent of CnG as Cn c
CnG

Furtherl G I < * ifG: {1, g1, ..., g.}
then p - 1 * gr + ... + g- e C,G is suchthat

9' : F.Finally every H. a subgroup in G is of
finite order and if H, : { l, h' hr, ...,\} then f
- 1 +hr + ... + h, e C,G is such thaty2 =y.

Hence the theorem.

Next subsemirings and ideals of the
group semiring CnG are discussed in the
following.

Example 2.7: Let Cn be a chain
lattice and G = (g I g't = l) be the cyclic group
of order 18. CeG be the group semiring.

A, = {0, l, (l +g+ ... + g't)} cCrG
is a subsemiring of order 3.

4: {0, l, (l + g,+ * +... +gtu)} c
CnG is again a subsemiring of order 3.

Ar: {0, l, (1 + gt + {* ge * ... *
g't)) g CnGis also a subsemiring of order 3.

{ = {0, 1, {l + t'+ g'r}} c CrG is
also a subsemigroup of CnG.

A, = {0, 1, {l + gr}} E CnG is a
subsemiring of order 3.
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Now let P, : {1, E', {,..., gtu} c G
be a subgrouP of G. Cn P' c CnG is a

subsemiringof CrG.

LetP r= {1, gn} c G be a subgrouP of

G.CnP, g CnG is.a subsemiring of CnG

Let P, : {1, Eu, Et'l g G be a

subgroup of G CnP, E CrG is a subsemiring

of CrG

Let Po: {1, gt, gu, .., gtt} E G be a

subgroup CeP4 s CnG be a subsemiring of

CnG'

LetM, = {0, ar, 1} q Cn is asublattice

ofCr:0 < ur ' uu' -.. dr1 a, < 1'

Now M,P, g CnG is a subsemiring of

CnG'

LetMr: {0, au, l} s Cn is asublattice

of Cn and MrP,, MrPr;MrPrand MrPn are all

subsemirings of CrG.

Thus CnG has several subsemirings

but all of them are not ideals of CrG only a

few ofthem are ideals'

Further M2P* M2P2, MrP, and MrPo

are only subsemirings and none of them are

ideals of CnG.

ExamPle 2.8: Let Crbe the chain

lattice. G : <g I g : t> be the cyclic group of
degree three. CrG be the Soup semiring of
the group G over the semiring Cr.

P = {0, 1, 1 + g+ g'\ c CrG is a

subsemiring. This is not an ideal of CrG

K. Jayshree, et al.

In view of all these the following
proposition is proved.

Proposition 2'3: Let CnG be the

group semiring of the group G over the

semiring Cr. If M is a subsemiring of CnG

then M is not an ideal of C"G

Proof Proved using an examPle' ln

the example 2.7 ofthis paperthere are several

subsemirings of the group semiring which is

not an ideal.

Next the concept of right and left ideal

exist only when CnG is a non commutative

group semiring. Consider the following

example.

Example 2.9: Let CrS, be the grouP

semiring of the symmetric group S, over the

semiring C2. C2S3 has right ideals which are

not left ideal. Thus as in case ofgroup rings

which are non commutative in case of group

semirings which are non commutative has right

ideals that are not left ideals and vice versa'

Another interesting feature is in case

of afiel4 fieldhas no ideals otherthan (0) and

F but however semifields which are group

semirings of the form CnG has ideals'

In the next section the studY of
groupsemirings using distributive lattices which

are not chain lattice is carried out.

j Study of grouP semirings using

distributive lattices which are not chain

lattices:
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In this section a study of group
semirings using dishibutive lattices L which are

not chain lattices is carried out. Unlike chain
lattices in case ofdistributive lattices the group

semi rings in general are not semifields.
However in case of certain lattices the group

semiring can be a semifield.

Since the replacing of semiring (chain

lattice) by a distributive lattice will not alter
the definition of a group semiring so here the
definition of group semiring using distributive
lattices are not made once againl'2.

be a distributive lattice. G = St be the
symmetric group of degree 4.LG the group
semiring is a semi division ring. Further L is
not a semi field as LG is non commutative
semiring. Thus LG has no zero divisors but
LG is anon-commutative semi ring.

Example 3.3.' Let B

289

First a few examples of them are
glven.

Example 3.1: LetL

be a distributive lattice.

G : (g I g'o : 1) be the cyclic group of
order 10. LG be the group semiring of the
group G over the semiring L which is a
distributive laffice. LG is not a field. In the first
place L is a semiring and not a semifield as a,
A &u:0. Thus LG has zero divisors so LG is
onlya semiring.

Example 3.2: LetL

be the Boolean algebra. G : (g I gl2 : 1) be
the cyclic goup of order 12. BG the group
semiring. BG has zero divisors, units and
idempotents o, : (augiu + asgz) and p : 4og, e
BG
oP = (aud + ar*) * aog' : 0. Let c = l* 93
+d+geeBG

Clearly a2: aso a is an idempotent.
I-et g7 e BG gte BG is such that gt , gt = L
All elements in G are units ofBG as G c BG.

Theorem 3.1: Let L be a distributive
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lattice and G any group. LG the group
semiring of the group G over the serniring
L.. LG has zero divisors if and only if L is a
distributive lattice which is not a semi field.

Proof: If L is not a semi field. That is
there exist di, aje L \ {0}, ai* aj such that
qA ai = 0. Take o : aig, and p = a,g e LG;
EpgeG

K. Jayshree, et al.

G over Sr.
Let R, : {1, pr} be a subgroup. LR,
is a subsemiring which is not an ideal.
Let\: ll,pz) c S, bethe subgrwp.
L\ is again a subsemiring.

LR, and LR, are isomorphic as
subsemirings by mapping p, to p, and rest of
the elements to itself-

The following theorem is interesting
which describes a semiring which is not a
sernifield.

Theorem 3.2: Let a be afinite goup.
L is a Boolean algebra of order greater
than or equal tofour. LG the group semiring
has zero divisors.

Proof: Follows from the fact all
Boolean algebras oforder greater than or equal
to fourhas elements a, b e L \ {0} with a n b
= 0. This will contribute for zero divisors of
the form oF = 0 when o : ag, and P = b&
witho t I : aF = agr " bg,: (an b) g,g : 0.

Theorem 3.3: Let G be a group of
finite order L be a distributive lattice which
is not a chain lattice. LG be the group
semiring of the group G over the lattice L.
LG has non trivial idempotents.

Proof: Given I G | = n < o a finite
group. LGthe group semiring.

Thke o: (l + g, * ...+ g*,) e LG.
Clearly s,2 = a so a is an idempotent of LG.

Likewise if H' I{2, ..., H, are non-
trivial subgroups of order pp p2, ..., p,

respectively then p, = I * hr * h, + ...* ho.l

aigtl atg2

(ar 
^ 

a,) (gr&)

o (g,gr) = o.

Thus LG has zero divisors.

Corollary 3.1: If L is a semifield
then the group semiring LG has no zero
divisors.

Proof follows from the fact L is a
semifield and no o, B € LG \ {0} is such that
o"P=(o).

Example 3.4: I-etL lattice given by following
diagram.

0

G = S, be the symmetric group of degree three.

LGbethe group semiringofthe group
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e LG where H, = {1, h1, h2, ..., ha^} g G is

such that 9i = Ft .

Let P, =1 + kr + k, + ""+ kn,-r

e LGwhereHr: {1, k1, k2, "', kor-t} g

Gis P] = Br.

Likewise if H,:{ 1, 1Ir1, m2, "', lllp, -t ]
g G the subgrouP.

Pt:1+ ml + frz 1.,.t flp,-, e LG

is such that Bl = B, .

Hence the theorem.

The idempotent in L will be called as

trivial idempotents. Likewise zero divisors in

L will be defined as triv ial znto divisors of LG

ClearlY L has no units and units

contibuted by the group G will be termed as

trivial units ofLG

For the definition and properties of

Smarandach e zero divisors please refet''

Conditions for Smarandache zero

divisorsto exist in group semirings; BGwhere

B is a Boolean algebra is obtained in the

following

Example 3.5; Let B

be a Boolean algebra. G = (g I g'u: 1) be the

cyclic group of order 16. BG be the group

semiring of the group G over the semiring B'

Let x= ao(Et, + 92) and ! = ds (g? + gs)eBG

x x )F ao(Bt' + g') t a, (gt + s')
= (aoA ar) (g'' + gt) (gt + gt)

=Q.

Let a = ao (gro + g) and b = ar(g, + g" +

gr3) e BGi t 
"=0 

andY x b =0buta x b *
O. ttt tt x, y e BG is a Smarandache zero

divisorl'5.

Example 3.6: I'et B

Be a Boolean urg"uruo- order four and G be

any group. BG be the group semiring of the

grou-p G over the semiring B. BG has no S-

zero divisors.
In view ofthis the following theorem is proved'

ProPosition 3.1 : Let G be anY grouP

and B a Boolean algebra BG the grouP

semiring.

i. BG the gory semiring lws S-zerc divisors

if lB l> 4

ii. BG hos only zero divisors and no S'zero

divisors if lB l: 4

iii. BG has no zero divisors if lB l: 2'

Proof: Proof of i. follows from the

fact if lB P 4 then B has zero divisors as well

as S-zero divisors.



Hence BG will have S-zero divisors
(refer example 3.5).
Proof of ii. If lB l:4 then

Clearly a x b.:0 is a zero divisor and
cannot find another y + 0 with ay = 0 and
a. x: 0 with bx: 0 and xy * 0. Hence the
claim.

Proof of iii. If I B | : 2 thenB is a
chain lattice hence BG has no zero divisors.

Next the study about the existence of
S-anti zero divisors is discussed.

Example 3.7: LetB:

0

be the Boolean algeb G: S'
the symmetric group ., be the
group of semiring of the goup S" over the
semiringB.

Leta=(1 + p, + pr), F = (1 + p) e

BS,.Clearly6sxp*(0).
Take x : a (pz+ pr) and y: b (ps * pr
+ l)e BSr.

Consider

ax: (l + p, * p2) a (p, + prl

K. Jayshree, et al.

: I 
^ 

a [(l +p, +pr) " (p, +Or;,
=(Pr*Pr*l*Pr+pr+pr)
:a(pz* l*pr*pr*pr+pr)
:a(l+prIpr+pr)*0.

Consider

FY:(l *pJ " b(l +p, +pr)
:b^l(1 +pJx(1 +pr+pr)l
:b(1*pn*pr*p,+1+pr)
:b(l*p,*pr*po+pr)*0.

So Py+0andox+0but
xy: a (p, + pr) " b (p, + p, + 1)

: a n b [(p, +pr) t (p, +p3 + 1)]

-0.

Thus cr is a Smarandache antlzero
divisorofBG

In view ofthe following proposition is
proved.

Proposition 3.2: Let B be a Boolean
algebra oforderfour. G any group and BG
the group semiring of the groqp G over the
semiring B. BG has S-anti zero divisors.

Clearly op * 0. Further cx * 0 and Fy
* 0 but oP = 0. Thus x is a S-anti zero divisor
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inBG.

Theorem 3.4: Let BG be the grouP

semiring of the group G over the Boolean
algebra of order four Let a e BG be a S-
qnti zero divisor then a need not be a zero

divison

Proof: Follows from the example 3.7.

For a in that example is not azero divisor in
BG.

Proposition 3.3: Let BG be the grouq

semiring of the group G over the Boolean
algebra of order greater than 4. BG has

both S-zero divisors as well as S-anti zero

divisors.

Next we study the Smarandache
idempotents in these group semirings. At first
it is important to know that the distributive
lattices or for that matter any lattice L will not
contain any Smarandache idempotent as every

element in L is such that a x a: a A a: * =
a for all ae L.

However it is an interesting feature

to analyse whether the group semiring of a
group G over a distributive lattice L have

Smarandache idempotents. Let BG be the
group semiring of the group G: S, over the

semiring B which is a Boolean algebra.

Take a: (1 + po + pr) and b = (p, * p,
* pr) we see a2 : a and b2 : a; ab = a. Thus

group semiring has S-idempotents.

Example 3.8: Let G: (g I 98 = 1) be

the cyclic group oforder 8. B be any Boolean
algebra or a distributive lattice. BG be the
group semiring of the group G over the

semiringB.
Letc: 1 * 92 + { + guand p : g* 93

+ gt * g7e BG.

Clearly a"2 : a",9' : a and oB : P.

In view of all these the following
interesting theorem for cyclic groups ofeven
order is given.

Theorem 3.5: Let G : <g le' : 1>
be the cyclic group of order 2n. B be a
distributive lattice or a Boolean algebra.
BG the group semiring has a Smarandache
idempotent.

Proof: Take a: (l + gt + { + gu + gt

+ ..... + g2*2) e BG

Let p: (g + g'* gt * g' + .... + g2n-r)

e BG. Clearly a"2: a-, oB: B and P': o. So a

is a Smarandache idempotent.

Example 3.9: LetB be a distributive
lattice or a Boolean algebra.

D: {a,b la2:b2:1, bab: a} be the

dihedral goup.BD be the group semiring of
the group BD over the semiring B.

Take o: (1 + b + bt + .... + bre) and

9: (a * ab * abz * ..... + abre) e BD.

Clearly &2 : a, and p2 : a with cP : 9.

The a is a Smarandache idempotent in BD.

In view of this the following theorem.

Theorem 3.6: Let L be a distributive
lattice or a Boolean algebra. Let G : Drn



2%

= {a,b / at = b' : l, bab : a}; n an even
integer say 2m. LG be the group semiring
of the group G over the semiring L. LG has
S-idempotents.

Proof: Consider o = (1 + b + bz + ...
+ b--') and p = (a + ab * ab2 + ... + abh-r) e

Let

K. Jayshree, et al.

LG. Clearly d = a arrd Ft = o and aP = F.
Thus o a Smarandache idempotent of LG.

Example 3. I0; IrtAn be the alternating
subgroup of So; L be a distributive lattice or a
Boolean algebra. LA, the group semiring.

"=(:" 
" 

1) .[l :: 
^)and

4)l+
2)

e2

23
23
23
23
23
4l

(r23
[2r4

l(' 2 3

L\.2 | 4

(r23
[+ 32

u=[1 

" 

i
(t 2 3 4\

[+ 3 2 t)"on

F,=

oF=

1).(l

i).[l
i).[l

34)
l=Cl34)

4)
4) *

i)l

:).

'^ i) .(l

3

I

)

2

2

(r

[4

2

3

)+

.[i

2

4

3

I

23
32

34)
2 r)

il
(r2
[34 =p.

Thus o is a Smarandache idempotent
ofLAr.

In view of all these the following
theorems are proved.

Theorem 3.7: Let G be a group of
order n and G has a subgroup of order m
(m/n; m an even number). L any distributive

lattice or a Boolean algebra. LG the group
semiring has S-idempotents.

Proof: Let H be a subgroup oforder
saym =2t and letP = { l, gr, ..., gt-r} be a sub

group of H. Then take o = 1 * gr * ... * gt-r

andg= t hi e LG.
h; eH\ P
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Clearly s? = uand p2 = c and cP = c.Thus o
is the S-idempotent of LG.

Theorem 3.8: Let & be the
symmetric group of degree n (n even or
odd). L any distributive lattice. LSn the
group semiring. LSn has S-idempotents.

Proof:

Case l: n is even. Sn has a subgroup

of order n which is cyclic. Hence using this

subgroup say G = ll, * ,,,, gn'l) contributes

to the S-idempotent; o= I * g2 +,,.+ gn'2 and

F = (g * g, * ... + gn"l) e LSn is such that o2

: a;92: o and crp = F.

Let n be odd then n - I is even. Let H
: cyclic group generated by h e Sn oforder
n- l.

Now (l + h2 + ha + ... + h*3): o and

P 
: G + h3 + ... + hn-l) e LSn are such that a2

: o, 92: c and oF: P.Thus o is a S-idempotent

of LSn. Hence the theorem.

4. Conclusions

In this chapter group semirings of
groups over semirings which are distributive
lattices is carried out. Further in case of chain
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lattices Cn the group semiring CnG is a

semifield in case G is abelian and a semi
division ring in case G is a non-commutative

soup.

Further if the distributive lattice L has

zero divisors then only the group semiring LG
will have zero divisors.

Finally idempotcnr which are in LG\L
are identified. The ooncept of Smarandache
zero divisors and Smarandache idempotents
in group semirings (where semirings are
distributive lmices) are canied out and conditions
for their existence is also detennined in this
paper. However in ease of group semi rings
LG overdistributive lattices it is impossibleto
find units or S-unit in LG\G
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