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Abstract

In manpower planning, one of the most important variables is duration until a specified event occurs.
This is frequently the completed Length of service until leaving a job, which enables us to predict staff turnover.
In manpower planning it is commonly the case that employees withdraw from active service for a period of time
before returning to take up post at a later date. Such periods of absence are frequently of major concern to
employers who are anxious that employees return as soon as possible. A model is derived in which the demand
for manpower is assumed to be a random variable. Since the demand for manpower is not deterministic, it
undergoes fluctuations. It may be noted that the demand distribution satisfies the so called Lack of Memory
Property (LMP). Recently, there has been much attention given to higher order equilibrium distributions
associated with a given distribution function. In this paper, a optimal recruitment policy has been discussed
using Setting Clock Back to Zero(SCBZ) property  using Equilibrium distribution. Numerical examples are also
highlighted.
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1.0.  Introduction

Recently, there has been much attention given to higher order equilibrium distributions associated
with a given distribution function, refer to Fagiuoli(1993,1994), Nanda et.al.(1996) and Li (2011). The equilibrium
distributions has interest of researchers from various fields ever since it was introduced by Cox (1962), which
sparked applications to numerous areas such as characterization of distributions, criteria for ageing, formulation
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of maintenance policies, income analysis, insurance etc.. In manpower planning, one of the most important
variables is duration until a specified event occurs. This is frequently the completed Length of service until
leaving a job, which enables us to predict staff turnover. In manpower planning it is commonly the case that
employees withdraw from active service for a period of time before returning to take up post at a later date. Such
periods of absence are frequently of major concern to employers who are anxious that employees return as soon
as possible. A model is derived in which the demand for manpower is assumed to be a random variable. Since the
demand for manpower is not deterministic, it undergoes fluctuations. It may be noted that the demand distribution
satisfies the so called Lack of Memory Property (LMP). In this paper, a optimal recruitment policy has been
discussed using Setting Clock Back to Zero(SCBZ) property  using Equilibrium distribution. Numerical examples
are also highlighted.

Several applications of equilibrium distributions include the areas of characterization of distributions
by Gupta (1979), Hitha and Nair (1989), Nair and Hitha (1989), Gupta and Kirmani (1990), Sen Khattree (1996), etc.
From perusal of the literature, it appears equilibrium distribution and its properties are most studied in the
context of reliability modeling and analysis. Various aspects investigated in this respect can be summarized as
follows. The relationships between various concepts in reliability for the equilibrium distribution and the
baseline distribution are most important among them. These in turn provide the basis of many characterizations
of lifetime models. Secondly most of the ageing concepts can be either interpreted or characterized by appropriate
properties of the equilibrium distribution. Further, many new ageing concepts are evolved by comparing the
ageing patterns of the baseline distribution and the corresponding equilibrium counterpart. Equilibrium
distributions of higher orders have been proposed by a process of iteration that brings in new models whose
characteristics can be expressed in terms of the original model. Many such relationships provide new methodology
for establishing simple proofs in several cases and also enable statistical inference and analysis. The role of
equilibrium distributions is fundamental in deriving proofs of properties of stochastic orders connecting reliability
functions.

2.0.  Equilibrium Distribution :
Some classifications of reliability distributions are based on properties of higher order equilibrium

distributions. Although much attention has been paid to the equilibrium distributions associated with a given
d.f.,  most results are for continuous random variables.

Let X be a random variable admitting an absolutely continuous distribution function F(x) with respect
to the Lebesgue  measure in the support of the set of non-negative real and having a finite mean . Associated

with X, a new random variable Y is defined, whose p.d.f. is   f(x) = 


S(x)
,  x>0                                                                                    (1)

where  S(x) = P(X  x) is the survival function of X.
The probabilistic comparison of Y with parent population of X is utilized to explain the phenomenon of

ageing. Gupta (1984) obtained the equilibrium distribution as a weighted distribution with weight [h(x)]-1 where
h(.) is the failure rate. Let G(.) denote the survival function of Y. The relationship of the characteristics of
equilibrium distribution with that of the parent distribution in the context of reliability are studied by Gupta
(1984), Gupta and Kirmani (1990) and Hitha and Nair (1989). Some of the important identities among them are

(i) G(x) = 


x

dttS )(1

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(ii) hy(x) = 
)(

1
xr

, where hy(x) is the failure rate of Y..

In the point of view of Deshpande et.al. (1986) the life distribution of a unit which ages more rapidly will
come off worse in a comparison of S(x) and G(x). The wide spread applicability of weighted distribution in
univariate case has prompted many researchers to extend the concept to the higher dimensions. However the
applications to real problems in such cases have rarely been pointed out. If (X1,X2) be a random vector in the
support of {(x1,x2) : 0 < x1,x2 <  } with an absolutely continuous distribution function F(x1,x2) or the survival
function S(x1,x2). Defining w(x1,x2) be a non-negative weighted function with E[w(x1,x2)] <  , Mahfoud and
Patil (1982) defined a bivariate weighted distribution as the distribution of the vector (Y1,Y2) with p.d.f.

s(x1,x2) = )],([
),f(x )x,(x

21

2121

XXwE
xw

                                                                         (2)

when  w(x1,x2) = 1/h(x1,x2)     = 
 )x,f(x
 )x,(x

21

21S

E[w(x1,x2)] = 2121
0 0 21

21 ),(
),(
),( dxdxxxf

xxf
xxS

 
 

That is E[w(x1,x2)] = E(x1,x2) = 

Hence    g(x1,x2) = 
 )x,E(x
 )x,(x

21

21S
 = 

 
 )x,(x 21


S

(3)

Let G(.,.) denote the survival function of (Y1, Y2). Then

G(x1,x2) = 21
21

1 2

),( dtdtttS

x x
 
 


(4)

We can see that
hy(x1,x2) = 1/r(x1,x2)  (5)

2.1.  Reliability Concepts for Continuous Lifetime Distributions :
If X be a non-negative random variable representing lifetime of a system or a device having absolutely

continuous distribution function
F(x) = P(X  x),   x>0
Then the survival function of X is denoted by S(x) and is defined as
S(x) = P(X > x),
        = 1 – F(x),  x>0.                                                                                       (6)
S(x) is a non-increasing continuous function with
Lim S(x) = 1                              and                 Lim S(x) = 0.
x0                                                                 x



2.2. Hazard rate :
An important function that characterizes lifetime distribution is the hazard rate. It is denoted by h(x)

and is defined as

h(x) = 
x

xXxxXxP
x 




)/(lim
0

 ,  x > 0.

The hazard rate specifies the instantaneous rate of failure of a device in the next small interval of time x, given
that the device has survived up to time x. Thus h(x)x is the approximate probability of failure in the interval
[ x, x+x ), given survival up to time x.  The hazard rate is also known as conditional failure rate in reliability and
the age-specific failure rate in epidemiology. When X is absolutely continuous, the hazard rate is expressed as

h(x) = )(
)(

xS
xf

        =  % )(log xS
dx
d

                                                                (7)

Integrating equation (7) with respect to x, we obtain

S(x) = exp 







 

x

duuh
0

,)(                                                                                  (8)

Which shows that h(x) characterizes the distribution of X. The pdf of X can also be represented as

f(x) = h(x) exp 
 









 

x

duuh
0

,)(                                                                           (9)

2.3.  Mean Residual Life Function :
Mean residual life function plays an important role in reliability, survival analysis and various other

areas. It is often referred as life expectancy or expectation of life in demography. The mean residual life function
(mrl) of X, m(x), is defined as the mean of the residual life     (X-x/X>x), More explicitly,
m(x)  =  E(X-x/X>x),

=  
 





x

duufxu
xS

,)()(
)(

1

= 
 




x

duuS
xS

,)(
)(

1
                                                                              (10)

2.4. Variance Residual Life Function:
Another function which has also generated interest in the recent years is the variance residual life

function. It is denoted by 2(x) and is defined as

2 (x) =      )(/ 22 xmxXxXE 

=   
 

     



x

xmduufxu
xS

,
)(

1 22

=  
 

     



x

xmduuSxu
xS

,
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2 2
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=    
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,
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  (11)

obtained by integrating by parts on each of the steps. Abouammoh et.al. (1990) showed that the variance
residual life together with mean residual life function characterizes the distribution of X through the identity

S(x) = exp 
  

    









 

x
du
d

du
umu

u

0
22

2




                                                              (12)

3.0. Setting the Clock Back to Zero Property :
Rao and Talwalker (1990) introduced this concept of setting the clock back to zero (SCBZ) property. A

family of life distributions      ,0,, xxf  is said to have the SCBZ property if the form of   ,xf
remains unchanged under the following three operations, except for the value of parameters, that is
      ,, xfxf          where                                                       (13)

(i).     Truncating the original distribution at some point x0 0.
(ii).   Considering the observable distribution for life time Xx0 and
(iii). Changing the origin by means of the transformation given by X1 = X-x0, so that X10.

In terms of the survival function S(x,), the definition can be restated as the following. A family of life

distributions      ,0,, xxS  is said to have the SCBZ property if for each x0  0 and   , the
survival function satisfies the equation
S(x+x0, ) = S(x0, ) S(x, *)                                                                                     (14)

with * = *(x0) Є 
The random variable X is said to have SCBZ property if
P(Xx+x0/Xx0) = P(X*ex),                                                                      …   (15)

For Exponential, Pareto type II, finite range, Gompertz, linear hazard model, the model for time to tumor
has been given by Rao (1990) possess this property. Rao et.al. (1993b) extended the notation of SCBZ  in the
bivariate case which he called the extended SCBZ property. Consider an individual exposed simultaneously to
two risks R1 and R2 with hypothetical life times X1 and X2 respectively. The joint survival function of X1 and X2

is defined by S(x1,x2,), 0   x1,x2 < , where θ is the parameter or a vector of parameters. The survival function
of the individual up to age x0 can have the idea that the individual’s hypothetical life times satisfy X1x0 and
X2x0. The conditional distribution of the additional survival time of an individual due to risk R1 given that the
individual has survived for a time to x0 units is

P(X1x1+x0 / X1  x0, X2  x0) = 
 

),,(
),,(

00

001




xxS
xxxS 

                                         (16)

In a similar way,

P(X2x2+x0 / X1  e”x0, X2  x0) = 
 

),,(
),,(

00

021




xxS
xxxS 

                                         (17)
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Using this notations Rao et.al. (1993b) defined SCBZ property in the bivariate case as follows.

A class of bivariate life distributions  
 

),,(
),,(

00

001




xxS
xxxS   =   ),,( 01

xxS

    and          
 

),,(
),,(

00

021




xxS
xxxS 

  =  ),,( 20
xxS

Where * = *(x0) and ** = **(x0) Є 0  where  0  denote the boundary of  .

They have showed that the life expectancy vector (r1( ),, 00 xx ,r2( ),, 00 xx )  has a closed form,
since

r1(x0,x0,)  =  E   020101 ,/ xXxXxX 

    = 
 

    ,,,
),,(

1
21

0 0
2101

00

dxdxxxfxx
xxS  

 

 


where   ,, 21 xxf  is the joint p.d.f. of (X1,X2).  That is

r1(x0,x0,)  = 
 

 

0
1

00

001

),,(
),,( dx

xxS
xxxS



   =  
 





0
101 ),,( dxxxS               Similarly  r2(x0,x0,)  = 

 





0
.220 ),,( dxxxS 

The examples cited in Rao et.al. (1993b) include the bivariate exponential distributions proposed by
Marshall-Olkin (1967) and Gumbel (1960), Bivariate Gompertz and Bivariate Pareto models.

3.1.  Setting the Clock Back to Zero Property in Equilibrium Distribution :
If X be a random variable  admitting  an  absolutely  continuous survival  function S(x,) with respect

to the Lebesgue measure in the support of the set of non-negative real with a finite mean . Then a new random
variable Y with p.d.f.

G(x,)  =  
 

0,),(
xxS




is said to be the random variable corresponding to the equilibrium distribution.. A family of survival distributions
{S(x1,x2,): x1,x2>0,  Є} is said to have conditional SCBZ(1) property if it satisfies the equations
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                                            (18)
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for all   0,,, 2121 sstt  where *  and ** belong to   .

 ),,( 211 ttG  = P(X1>t1 /X2>t2,)

        =  
 

), t>P(X
),t>X, t>P(X

22

2211




 ),,( 211 ttG =  
 

),,0(
),,(

2

21




tS
ttS

             and           ),,( 212 ttG    =  
 

),0,(
),,(

1

21




tS
ttS

3.2.  Conditional Setting the Clock Back to Zero (2) Property :
In accordance with the conditional lack of memory property defined by Nair and Nair (1991), a new

approach can be taken to define the SCBZ property in the bivariate case. We call that property as conditional
SCBZ(2) property. If (X1,X2) be a non-negative random vector defined on R2

+ with an absolutely continuous
survival distribution R(.,.,).  Denote the conditional survival function of Xi given Xj=tj by Si(ti,tj,) for all
i,j=1,2; i  j.

That is    ),,( jii ttS  = P(Xiti  / ti  Xj  tj+dtj),   i,j = 1,2;  i j.

where dtj is a small increment in tj.

3.3.  SCBZ properties in Bivariate Equilibrium Distribution :
The bivariate equilibrium distribution has a density of the form

g(x1,x2,) = S(x1,x2,)/,    x1,x2>0
where S(x1,x2,) is the survival function of the parent distribution. The case of univariate situation of  hy(x1,x2,)
denote  the scalar failure rate of (Y1,Y2) and r(x1,x2,) denote the scalar mean residual life of (X1,X2), we will get
the identity , which is
hy(x1,x2,) = 1/ r(x1,x2,).

3.4.  Multivariate Setting the Clock Back to Zero Properties :
The SCBZ properties in the bivariate case can also be extended to more than two variables cases. A

class of multivariate life distributions {R(x1,x2,…, xn,θ), xi  0,  } is said to have multivariate SCBZ(1)

property if for each θЄ  and x0  0, the survival function satisfies the condition

 
),,...,,(

),,...,,(
),,...,,(

21
000

00201 






n

n xxxS
xxxS

xxxxxxS
                                   (19)

where  =    = .)( 0  x  

3.4. SCBZ Property of Discrete Distributions :
The study of this property in the discrete set up is of more interest, since in actual practice the life of

the components are measured in discrete time units, that is the time is measured discrete time units, that is the
time is measured discretely as the completed years of life or as number of cycles. The difficulties, in measuring
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the time continuously are discussed by authors like Xekalaki (1983), Cox (1972) and Kalbfleish and Prentice
(1980).
 

)(
)()(

xS
xfxk  ,    the vector valued failure rate of Johnson and Kotz (1975)  (20)

 ),(log)( xSxh   Where 
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 is the p-dimensional gradient operator, so that if hi(x)
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Further, the mean residual life function of X is Zahedi (1985)
m(x) = E [X-x/X > x]    with ith component
mi(x) = E[Xi - xi/X > x],

         =  
 

i
x

ii dttxS
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),(
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1

1


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   (22)

where (x(i),ti) stands for the vector x in which the ith element xi is replaced by ti. differentiating equation (23)
partially with respect to xi,
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    We get the relationship between equation (21) and equation (22) as,
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We also need the concept of product moment of residual life defined as Nair et. al. (2004)
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The multivariate equilibrium distribution of order n based on S(x) is defined recursively through the
relations

,....2,1,
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with S0(x) = S(x) and

n = .)(
),0(

dttS n 

Some interpretations offered to the univariate equilibrium distributions can be extended to the MVED’s
as well.
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The last expression is the density function corresponding to Sn(x). Secondly, in the univariate case, if
X is a non-negative random variable with density function f(x), then the distribution of W Z is the equilibrium
distribution,

)(
)()(

XE
xxfxfW       and Z is uniform over (0 ; 1) independently of W .

The n-th order equilibrium distribution of the mixed p.f.



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Based on the 1st  order and nth order equilibrium distribution, their estimates, K-S distance and the corresponding

p-values are presented in the table along with m(x) and ).(2 x
In manpower planning the concept of SCBZ is used to derive the Expected time to recruitment and its

variance by several researchers. In the case of Equilibrium Distribution is not possible derive the mean and
variance where as the 1st order and nth order statistics derived for the specific distribution and it is attempted
by many researchers. Hence in this content it would be difficult task to derive the same and it is one of the
important problem for further research.

Table 1.  The K-S Distance based on 1st order and nth order Equilibrium Distribution

Parameters m(x) ).(2 x S(x) K-S distance p-value

1 1.056 32.987 38.956 0.0438 0.9147
2 1.190 45.987 47.432 0.0689 0.8023
3 1.334 61.908 65.843 0.0850 0.9137
4 1.509 74.895 78.902 0.0895 0.9768
5 1.734 82.675 89.369 0.0925 0.8989
6 1.897 97.412 102.784 0.0986 0.9608
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5.0. Conclusion

The conceptualizations of mathematical and Stochastic model help the process of finding the optimal
solutions and also the implementation of the same. However it is very important to identify the appropriate
probability distribution that would portray the realities. The identification appropriate distribution is an important
step. To make a brief introduction  on equilibrium distributions and their applications, which explain the motivation
and objectives of the present study. Some basic concepts in reliability that help to explain the existing results.
We considered equilibrium distributions of non-negative continuous random variables representing lifetimes
of components or devices. The survival function of equilibrium distribution of order n and that of the baseline
distribution were linked through the moments of the residual lives of the original distribution. Further, the
hazard rate and the mean residual life function of the higher order equilibrium distribution were expressed in
terms of their respective lower orders. We also derived the identity connecting the mean residual life functions
of the  original distribution, the equilibrium distribution of order n and the residual life distribution of the
equilibrium renewal process. It can be proved that the SCBZ property preserves in the equilibrium distributions
of univariate continuous and discrete cases. The bivariate SCBZ (2) property preserves in the equilibrium
distribution in continuous distributions and vice versa. The results show that the p value is significant and
gives better results for the 1st order and nth order Equilibrium Distribution when compared with m(x) and

)(2 x .  The validity of the numerical results gives only the best estimates when the real data is collected from
the industry.

6.0. Scope of  Future Research :

For further investigation, these are many areas of an organization or industry in which the optimal
recruitment policies for human resource planning is quite necessary. It would be very much useful in every
sector of human activity. First of all it is imperative to identify those areas of human activity,  policies relating to
the demand for manpower and supply are essential, and are usually at disequilibrium. Especially in the area of
specialist skill, it becomes necessary to identify where the disequilibrium exists and also were there is interruption
in the work schedule due to shortage of manpower. The identification of such areas, the type of problems
involved and the conversion of a real life situation into a mathematical model are essential to develop human
resource management, which will yield profits not only to the management but also to the society itself. The
conceptualization of different recruit policies developed in this paper help the process of finding the optimal
solutions and also the implementation of the same. However it is very important to identify the appropriate
equilibrium distribution that would portray the realities and real life data is an important procedure. Once this is
taken care of then the models can be used in solving real life problems.
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