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Abstract

 This paper aims to study the dynamical behaviours of an SIQR epidemiological model.  Positivity and
boundedness of the system are discussed.  Stability analysis of the equilibrium points is presented.  Numerical
simulations are carried out to validate our analytical findings.  Implications of our analytical and numerical
ûndings are discussed critically.
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1. Introduction

From prehistory to the present day, diseases have been a source of fear and superstition.  Nowa-
days,  infectious  diseases  have  become  a  cause  for  great  concern  for  domestic  and  global  health systems.
The  reemergence  of  many  diseases  and  appearance  of  many  new  diseases  have  laid down  serious  threats
to  civilization,  and  a  handful  of  deadly  infectious  diseases  claim  millions of lives worldwide each year.

Over  the  centuries,  quarantine  has  been  used  as  an  intervention  procedure  to  control  the spread
of  many  infectious  diseases.  The  list  of  such  diseases  include  leprosy,  plague,  cholera, smallpox,
diphtheria, tuberculosis, measles, mumps and many others.  Quarantine has also been used for animal diseases
such as foot and mouth, psittacosis, Newcastle disease and rabies10.

In  the  past  one  hundred  years,  mathematics  has  been  used  to  understand  and  predict  the spread
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of diseases, relating important public-health questions to basic transmission parameters. A  comprehensive
picture  of  disease  dynamics  requires  a  variety  of  mathematical  tools,  from model  creation  to  solving
diûerential  equations  to  statistical  analysis.   Although  mathematics has been so far done quite well in dealing
with epidemiology but there is no denying that there are  certain  factors  which  still  lack  proper  mathematical.
Almost  all  mathematical  models  of diseases  start  from  the  same  basic  premise:   that  the  population  can
be  subdivided  into  a  set of  distinct  classes,  dependent  upon  their  experience  with  respect  to  the  disease.
One  line  of investigation classifies individuals as one of susceptible, infectious or recovered.  Such a model is
termed  as  an  SIR  model.  A  detailed  history  of  mathematical  epidemiology  and  basics  of  SIR epidemic
models  may  be  found  in  the  classical  books  of  Bailey3,  Murray13  and  Anderson and May2.  For mathematical
works on SIR models, see14, and references there in.  An SIR  model can be modified by introducing a new class
Q of quarantined individuals, who have been removed and isolated either voluntarily or coercive from the
infectious class 10, 12.

At present, almost all the developing countries have increasingly realized the necessity of social
consciousness in preventing the diseases.  Also different protective measures against diseases are found to be
effective.  Therefore, a saturated incidence will be better to describe the disease dynamics  rather  than  the
mass  action  incidence.   Such  incidence  have  recently  been  used  by many authors5,7,11,16,18,15.

In  this  paper,  we  have  studied  the  dynamics  of  a  SIQR  model  with  a  saturated  incidence. The
rest  of  the  paper  is  organized  as  follows.  In  section  2,  we  present  the  mathematical  model with  basic
considerations.  Boundedness  and  positivity  of  the  solutions  of  the  model  are  established  in  section  3.
Section  4  deals  with  all  the  possible  equilibrium  points  of  the  model  and their  stability  analysis.   To
illustrate  our  analytical  findings,  computer  simulations  of  variety of  solutions  of  the  system  are  performed;
and  the  results  are  presented  in  section  5.  Section  6 contains the general discussion of the paper and
biological significance of our analytical findings. Section 7 indicates further scope of future work.

2   The  mathematical  model :
Before  we  introduce  the  basic  model,  and  dip  into  the  depth  of  the  things,  we  would  like  to

present  a brief  sketch of  the  construction  of  the  model,  which will  indicate  the  relevance  of the model.
Let us divide the total population into four compartments:  susceptible, infected, quarantined, and

recovered.    Let  S  be  the  number  of  individuals  in  the  susceptible  class,  I  the  number of  individuals  who
are  infectious  but  not  quarantined,  Q  the  number  of  individuals  who  are quarantined, and R the number
of individuals in the recovered class (with permanent immunity). We make the following assumptions:
1.  The  infection  confers  permanent immunity, so that  individuals  can move from  the  I  and Q classes to the
R class.
2.  The  flow  is  from  the  S  class  to  the  I  class,  and  then  either  directly  to  the  R  class  or  to the Q class
and then to the R  class as shown in Figure 1.
3.  It is already mentioned that, as the disease manifests, social awareness (in preventing the diseases)  is
grown,  and  diûerent  measures  are  taken  against  the  disease.   To  incorporate  these into the model, we have
taken a saturated incidence to describe the disease dynamics.

Figure 1:  The  transfer  diagram  for  the  model.
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The above considerations motivate us to introduce the basic mathematical model under theframework
of the following set of nonlinear ordinary differential equations:
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I
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dt
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,dRQI
dt
dR



Here the parameter A is the recruitment rate of susceptibles corresponding to births and immigration,   is the
disease contact rate for the susceptible  individuals,  d  is the per capita natural death  rate,   and    shows  the
eûect  of  saturated  incidence.  The  constant    is  the  rate  constant for individuals leaving the infective
compartment I  for the quarantine compartment Q.  1  and2  are the disease-related extra death rate constant
in compartments I  and Q, respectively; and   and    are  the  removal  rate  constants  from  compartments  I  and
Q,  respectively,  to  enter  into the  R  compartment.   The  parameters  A, d  and    are  positive  constants  and
, , ,   are  non negative constants10.

3     Positivity  and  boundedness :
Positivity  and  boundedness  of  a  model  guarantee  that  the  model  is  biologically  well  behaved.

For positivity of the system (2.1), we have the following theorem.

Theorem  3.1  All  solutions  of  the  system  (2.1)  that  start  in  4R  remain  positive  forever..
The  proof  is  simple  and  therefore  it  is  omitted.  The  next  theorem  ensures  the  boundedness  of the system (2.1).

Theorem  3.2  All  solutions  of  the  system  (2.1)  that  start  in  4R  are  uniformly  bounded.
Proof.  Let N  = S + I + Q + R.  Then we have

.QIdNA
dt
dN

21 

Therefore, the population size N  approaches the carrying capacity A/d when there is no disease. The  diûerential
equation  for   N  implies  that  solutions  of  (2.1)  star ting  in  the  positive  orthant

4R  either approach, enter, or remain in the subset

D = {(S, I, Q, R) :   S  0,  I   0,  Q  0,  R  0,  S + I + Q + R  A/d}.  

4   Equilibrium  points  and  their  stability :
Before we find the equilibria of the system (2.1), and dip into the depth of the stability analysis, we

state the following theorem6, 10, which would be very helpful for our analysis.
Lemma  4.1  Consider  the  following  two  systems

 ,yg
dt
dy xt,f

dt
dx )(),( 



where  x, y  Rn,  f  and  g  are  continuous,  satisfy  a  local  Lipschitz  condition  in  any  compact  set X    Rn,
and  f(t, x)   g(x)  as  t   ,  so  that  the  second  system  is  the  limit  system  for  the first  system.  Let
(t, t0, x0)  and  (t, t0, y0)  be  solutions  of  these  systems,  respectively.  Suppose that  E    X  is  a  locally
asymptotically  stable  equilibrium  of  the  limit  system  and  its  attractive region  is

W (E) = {y  X  :   (t, t0, y)  E,  t }.
Let W  be the omega limit set of (t, t0, x0).  If   W  W (E) , then limt (t, t0, x0) = E.

Now  it  is  time  to  find  the  equilibrium  points  of  the  system  (2.1)  and  study  their  stability. The
system (2.1) always has the disease free axial equilibrium point E1(A/d, 0, 0, 0), which exists unconditionally.
Let us define the quarantine  reproduction  number Rq  as

.
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


dd
ARq

Then we have the following theorem

Theorem  4.2  The  equilibrium  E1   is  locally  asymptotically  stable  if  Rq   <  1  and  unstable  if Rq  > 1.

Proof.  The variational matrix V (E1) at the equilibrium point E1  is given by
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The corresponding eigenvalues are 1  =  d,   2  = (  +   + d + 1) (Rq   1),   3  =  + d +2,  and  4   =  d.
Clearly  1, 3, 4   are  all  negative,  and  2   is  negative  or  positive  according  as Rq  < 1 or Rq  > 1. Hence the
theorem follows.                 
Theorem  4.3  If  Rq   1,  then  E1  is  globally  stable  in  D.

Proof.  Let us consider a the positive definite function J(S, I, Q, R) as follows
J  = I.

Differentiating J  with respect to t along the solution of  (2.1), we get
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By  the  Liapunov-Lasalle  theorem 8,  solutions  in  D  approach  the  largest  positively  invariant subset of the

set where  dt
dJ   = 0, which is the set where I  = 0.  In this set, we have

,Qd
dt
dQ )( 2
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and

,dSA
dt
dS



which imply that Q  0 and S  A/d as t .

Then the differential equation for R  is asymptotically equivalent to 
dt
dR

 =    dR ,

which implies that R  0 as t .
Thus  all  solutions  in  the  set  I  =  0  go  to  the  disease-free  equilibrium  E1.   This,  in  turn, implies

that all solutions in D  must also approach E1  (by Lemma 4.1).                 
Remark.  It is easy to notice that E1  is globally asymptotically stable if  Rq  < 1.

Now we consider the existence of the interior equilibrium point E*(S*, I*, Q*, R*).

Theorem  4.4  The  unique  interior  equilibrium  point  E*(S*, I*, Q*, R*)  of  the  system  (2.1)  exists  if  and  only
if  Rq  > 1.  When  this  condition  is  satisfied,  S*, I*, Q*, R*   are  given  by
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Remark.  We notice that the existence of E*  destabilizes E1.

We now study the stability of E*.  The variational matrix of the system (2.1) at E*  is given by
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       v32 = ,
       v33 =  d +  2),
       v42 = ,
       v43 = ,
        v44 =  d .

The characteristic equation is
4  +  A13 + A22 + A3+ A4 = 0 ,

where
A1 =  v11  v22  v33  v44  ,
A2 =  v22 v33  v11 v22 +v11 v33  v11 v44  v12 v21  v33 v44 + v22 v44 ,
A3 =   v11 v22 v44  v11 v33 v44  v22 v33 v44  v11 v22 v33  v12 v21 v44+ v12 v21 v33 ,
A4 =  v11 v22 v33 v44  v12 v21 v33 v44 .

Let  = A1A2A3  2
3A   2

1A A4. Then we have the following theorem on local stability of E*.

Theorem  4.5  If  > 0,  then  E*   is  locally  asymptotically  stable.

Proof.  It  is  easy  to  notice  that  A1  > 0,  A3  > 0,  A4  > 0.  Then,  as   > 0,  the  theorem  follows from Routh
Hurwitz criterion.   

The following theorem gives a global result on E*.

Theorem  4.6  If  E* is locally asymptotically stable, then   = D  {(S, I, Q, R) :   S = 0 or I  = 0}  is  a  region  of
global  asymptotic  stability  for  the  endemic  equilibrium  E*.

Proof.   Let    =  {(S, I)  :    S  >  0,   I  >  0,   and  S  + I  >  A/d}.  We  consider  the  following  SI subsystem of
the system (2.1) in  :
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Therefore,  by  Bendixson-Dulac  negative  criterion,  there  is  no  periodic  solution  in .  Thus  by the Poincaré-
Bendixson theorem, all solutions starting in  approach (S*, I*) as t .

In this case, the differential equation for Q has the limiting equation

.QdI
dt
dQ )( 2* 

Therefore, by Lemma 4.1, Q  Q*  as t .
Similarly,  the differential equation for R  has the limiting equation

,dRQI
dt
dQ *  *

so that R  R*  as t   (by Lemma 4.1).
Hence E*  is a globally asymptotically stable equilibrium for the system (2.1) in .   

5 Numerical  simulation :
In  this  section,  we  present  computer  simulations  of  some  solutions  of  the  system  (2.1).   These

simulations  are  performed  to  validate  some  of  the  analytical  findings  of  some  solutions  of  the system (2.1)
using MATLAB.

First, we take the parameters of the system (2.1) as A = 0.5,   = 0.3,   = 0.5,  d = 1,    = 0.7,    = 0.3,
1  = 0.5,   = 0.3,  2  = 0.2  in  Figure  2.  Then  the  conditions  of  Theorem  4.2  is satisfied and consequently
E1(A/d, 0, 0, 0) is locally asymptotically stable.

Next  we  consider  the  stability  of  the  interior  equilibrium.  We  choose  the  parameters  of  the
system (2.1) as A = 15,   = 3,   = 0.5,  d = 1,   = 0.7,   = 0.3,  1  = 0.5,   = 0.3,  2  = 0.2 in Figure 3.  Then there
is a unique interior equilibrium point E*(S*, I*, Q*, R*) where S*  = 2.8571,  I*  = 4.8571, Q*  = 0.9714 and R*  =
3.6914.  Hence by Theorem 4.5 , E*  is locally asymptotically stable.

 

Figure  2:  Behaviour  of  the  system  (2.1)  as
A  =  0.5,     =  0.3,     =  0.5,  d =  1,     =  0.7,
  = 0.3,   1   =  0.5,     =  0.3,      =  0.2  for

S(0)  =  0.35, I(0)  =  0.35, Q(0)  =  0.35,
R(0)  =  0.35, E1(A/d, 0, 0, 0)  is  locally

asymptotically  stable.

 

Figure 3:  A = 15,   = 3,   = 0.5,  d = 1,   = 0.7,
 = 0.3,  1  = 0.5,   = 0.3,  2  = 0.2.    Phase portrait
of  the  system  (2.1)  for  S(0) = 2,  I(0) = 2,  Q(0) = 2
and  R(0) = 2,  E*(S*, I*, Q*, R*), where  S*  = 2.8571,

I*  = 4.8571,  Q*  = 0.9714  and  R*  = 3.6914  is
locally  asymptotically  stable.
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6     Concluding  remarks

The  entire  globe  is  now  concerned  about  the  menace  of  infectious  diseases,  and  these  diseases
have caused fearful tolls in different communities.  However, almost all the developing countries have  increasingly
realized  the  necessity  of  social  consciousness  in  preventing  the  diseases.  Also different protective
measures against diseases are found to be effective.

Quarantine has been used to reduce the transmission of diseases for many centuries.  In this paper, we
have studied the dynamics of an SIQR epidemiological model.  A saturated incidence is taken to take into
account the effect of social consciousness, etc.  It is shown (in Theorem 3.1 and Theorem 3.2) that the solutions
of the system (2.1) remains non-negative forever, and they are  uniformly  bounded.  These,  in  turn,  imply  that
the  system  is  well-behaved.  The  equilibria and  their  stability  analysis  is  the  main  recipe  of  the  paper.   It
is  seen  that,  if  the  quarantine reproduction  number  Rq     1,  then  the  disease-free  equilibrium  E1  is  globally
stable.   On  the other  hand,  the  existence  of  the  endemic  equilibrium  destabilizes  E1.  A  criterion  for  global
stability of the endemic equilibrium is also established.

It  is  interesting  to  note  that,  when  the  disease  is  endemic,  the  steady-state  value  I*   of  the
infectives decreases as  increases.  This implies that the spread of disease decreases as the social or
psychological  protective  measures  for  the infectives  increases. In  other  words,  I*   increases as   decreases,
which  means  that  decreased  social  awareness  about  the  disease  might  cause  a rapid  spread  of  diseases.
Also  one  might  notice  that  I* approaches  zero  as   (although, in reality, it is perhaps beyond
expectation that social or psychological protective measures will reach such a level that we might think of 
; still, this theoretical observation might act as a  motivation  for  such  measures).   These  results  are  in  good
agreement  with  those  of  Xiao  and Ruan17, and Pathak et al.14.

7  Scope  of  future  work :

The system (2.1) in a random environment under pulse vaccination strategy can be formulated as
follows:
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dt
dW3

, t   nT ,

dt
dQ

 = (t)I  ((t) + d(t) + 2(t))Q + 3(t) Q (t) 
dt

dW3
, t   nT ,

dt
dR

= (t)I +(t)Q  d(t)R + 4(t)R(t)
dt

dW4
, t   nT , (7.1)

S(t+) = (1 p)S(t), t = nT, n = 1, 2, . . .
I(t+) = I(t), t = nT, n = 1, 2, . . .
Q(t+) = Q(t), t = nT, n = 1, 2, . . .
R(t+) = R(t) + pS(t), t = nT, n = 1, 2, . . . ,

where  A(t),   (t),   (t),   d(t),   (t),   (t),   1(t),   2(t),   (t)  and  i (t),   (i  =  1, 2, 3, 4)  are  all positive  T   periodic
continuous  functions,  T  is  a  positive  constant;  T  is  the  period  of  pulse  vaccination.  Here  p(0  <  p  <  1)
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is  the  constant  fraction  of  susceptible  who  are  vaccinated successfully at discrete time t = T, 2T, 3T, . . ., which

is called impulsive vaccination rate.  In this system,  i  = 
dt

dWi ,  (i  =  1, 2, 3, 4)  are  independent  standard  zero

mean  Gaussian  white  noises characterized by
<  i (t) >= 0,  <  i (t1) i (t2) >=  (t1   t2) and   <  i (t1) j (t2) >= 0,  (i   j),

where < · > represents the average over the ensemble of the stochastic process and  (t) denotes the Dirac delta
function.

The dynamical behaviour of this model system can be taken as scope of future work.
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