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Abstract

In this paper, we establish some fixed point theorems using Meir-Keeler type contraction in M-metric
spaces via Gupta- Saxena type contraction. We   also extend very recent results in fixed point theory.
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1. Introduction and Preliminaries

A variational principle is formulated by Ekeland which is the foundation of modern variational calculus.
It has many applications in various branches of mathematics, including optimization and fixed point theory3 and
also in nonlinear analysis, since it entails the existence of approximate solutions of minimization problems for a
lower semi-continuous function that is bounded from below on complete metric spaces. Also, this principle is
also a fruitful tool in simplifying and unifying the proofs of already known theorems and has many generalizations;
see Borwein and Zhu5.

In 1994, Matthews8 introduced a partial metric space and proved that a partial metric space is differ
from metric space in the sense that the distance of a point from itself may not be zero. Matthews8 proved the
Banach contraction principle in this new framework. After that several mathematicians proved many fixed point
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theorems in partial metric spaces.
Haghi et al.7 in 2013 published a paper which stated that we should ‘be careful on partial metric fixed

point results’ along with very some results therein. They showed that fixed point generalizations to partial
metric spaces can be obtained from the corresponding results in metric spaces. For example he proved the
following result shows that Theorem 1 in1 is a consequence of Theorem 2 in4.

Let (X,p) be a complete partial metric space, ߮ ∶  [0, +∞) → [0, +∞) a continuous and non-
decreasing function such that ߮(ݐ)  < for all t > 0 and T a selfmap on X satisfying  ݐ

(ݕ ܶ,ݔ ܶ)݌  ≤ ((ݕ,ݔ)݌ܯ)߮
for all ݔ, ∋ ݕ  ܺ. Then T has a unique fixed point.

In 2014, Asadi et al.2 extended the p-metric space to an M-metric space and proved some fixed point
and common fixed point theorems in this spaces. The following result is proved:

Let (X, m) be a complete M-metric space and let ܶ ∶ ܺ → ܺ be a mapping satisfying the following
condition:
∃݇ ∈ [0,1)  such that ݉(ܶݕܶ,ݔ) ≤ ݕ,ݔ for all  (ݕ,ݔ)݉݇ ∈ ܺ.

Then T has a unique ûxed point.
In this paper, we establish some of the fixed point theorem for a Meir-Keeler type contraction in

M-metric spaces via a Gupta-Saxena type contraction. Also, we extend and improve very recent results in fixed
point theory.

Definition 1.1. ([8], [11] Definition 1.1) :
A partial metric on a nonempty set X is a function ݌:ܺ × ܺ → ܴ+ such that for all ݕ,ݔ, ݖ ∈ ܺ ∶

1. ,ݔ)݌  (ݔ = ,ݕ)݌ (ݕ = ,ݔ)݌ (ݕ ⟺ ݔ =  ݕ

2. ,ݔ)݌  (ݔ ≤  ,(ݕ,ݔ)݌
3. ,ݔ)݌ (ݕ =  ,(ݔ,ݕ)݌
4. (ݕ,ݔ)݌  ≤ ,ݔ)݌ (ݖ + (ݕ,ݖ)݌ − ,ݖ)݌  .(ݖ

 
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

Notation :
The following notations are useful in the sequel:

(i) :ݕݔ݉  = min{݉(ݔ, ,ݕ)݉,(ݔ {(ݕ = ,ݔ)݉ (ݔ ,ݕ)݉∨  ,(ݕ

:ݕݔܯ(݅݅) = ,ݔ)݉}ݔܽ݉ ,ݕ)݉,(ݔ {(ݕ = ,ݔ)݉ (ݔ ∧ ,ݕ)݉  . (ݕ
Now we want to extend Definition 1.1 as follows.

Definition 1.2.
Let X be a non-empty set. A function ݉:ܺ × ܺ → ܴ+  is called a M-metric if the following conditions

are satisfied:

,ݔ)݉  (1݉) (ݔ = ,ݕ)݉ (ݕ = ,ݔ)݉ (ݕ ⟺ ݔ =  ݕ
ݕݔ݉ (2݉) ≤ ,ݔ)݉   (ݕ
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(ݕ,ݔ)݉ (3݉) =  (ݔ,ݕ)݉
(ݕ,ݔ)݉)  (4݉) ݕݔ݉− ) ≤ ,ݔ)݉) (ݖ (ݖݔ݉− + ,ݖ)݉) ݕݖ݉−(ݕ ) 
Then the pair (X, m)  is called an M-metric space.

According to the above, our definition of the condition (p1) in the definition8 changes to (m1) and (p2)
for p(x, x) is expressed by just p(y, y)=0, we may have p(y, y) 0,  so we improved that condition by replacing it
by min{p(x, x),p(y, y)} p(x, y) and also we improved the condition (p4) to the form (m4). In the sequel we present
an example that holds for the M-metric, but not for the p-metric.

Remark 1.3.
For every  ݔ, ݕ ∈ ܺ ∶ 
 (i)  0 ≤ ݕݔܯ  + ݕݔ݉ = ,ݔ)݉ (ݔ + ,ݕ)݉  ,(ݕ
(ii)   0 ≤ ݕݔܯ  ݕݔ݉− = (ݔ,ݔ)݉|  ,|(ݕ,ݕ)݉−
(iii)   ݕݔܯ ݕݔ݉− ≤ ݖݔܯ) (ݖݔ݉− + ൫ݕݖܯ ݕݖ݉− ൯ 
The next examples state that ms and mw are ordinary metrices.

Example 1.4. Let  m be a M-metric. Put:

(i)    ݉ݔ)ݓ, (ݕ = −(ݕ,ݔ)݉ ݕݔ2݉ + ݕݔܯ 

(ii)   ݉ ,ݔ)ݏ (ݕ = ,ݔ)݉ ݕݔ݉−(ݕ  when ݔ ≠ (ݕ,ݔ)ݏ݉ and ݕ = 0 if ݔ =  .ݕ
Then ms and mw are ordinary metrices.

Proof:   If  mw (x,y) = 0 then

(ݕ,ݔ)݉ = ݕݔ2݉ − ݕݔܯ   (1.1)

But from (1.1) and ݉ݕݔ ≤ we get   (ݕ,ݔ)݉ 

ݕݔ݉ = ݕݔܯ = (ݔ,ݔ)݉ = ,ݕ)݉  so by (1) get (ݕ
,ݔ)݉ (ݕ = (ݔ,ݔ)݉ = ,ݕ)݉ and therefore x = y.  For the triangle inequality it is enough to - that we  (ݕ
consider Remark1.1 and (m4).
In the following example, we present an example of a M-metric which is not a p-metric.

Remark 1.5.

For every  ݔ, ݕ ∈ ܺ: 
(i)   ݉(ݔ, ݕݔܯ−(ݕ ≤ ,ݔ)ݓ݉ (ݕ ≤ (ݕ,ݔ)݉ + ݕݔܯ , 

(ii)   ݉(ݔ, ݕݔܯ−(ݕ ) ≤ ,ݔ)ݏ݉ (ݕ ≤ .(ݕ,ݔ)݉

Example 1.6.
Let  X = {1,2,3}.     Define

݉(1,2) = ݉(2,1) = ݉(1,1) = 8, 



݉(1,3) = ݉(3,1) = ݉(3,2) = ݉(2, 3) = 7, 
݉(2, 2) = 9  and  ݉(3,3) = 5, 
So m is an M-metric but m is not a p - metric. Since ݉(2, 2) ≰ ݉(1,2),݉  is not a p - metric.
If ݔ)ܦ, (ݕ = ,ݔ)݉ (ݕ ݕݔ݉−   then ݉(1, 2) = ݉1,2 = 8  but it means (1,2)ܦ = 0 while 1 ≠ 2 
while D  means is not a metric.

Example 1.7 [2]
Let (X, d)   be a metric space, ∅: [0,∞] → [∅(0),∞)  be a one and nondecreasing or strictly

increasing mapping with ∅(0),  defined such that

ݔ)∅ + (ݕ ≤ (ݔ)∅ + (ݕ)∅ − ݕ,ݔ∀         (0)∅ ≥ 0. 
Then ݉(ݔ, (ݕ = .is a  M  metric   ((ݕ,ݔ)݀) ∅

Example 1.8

Let  (X, d) be a metric space. Then ݉(ݕ,ݔ) = (ݕ,ݔ)݀ ܽ + ܾ  where a, b > 0 is an M  metric, because we
can put ∅(ݐ) = ݐܽ + ܾ. 

Remark 1.9
According to the Example 5.1.4, by the Banach contraction

∃ ݇ ∈ (ݕܶ,ݔܶ)݉,(0,1] ≤ ݕ,ݔ for all  ,(ݕ,ݔ)݉ ݇ ∈ ܺ, 
We have

(ݕܶ,ݔܶ)݉ = (ݕܶ,ݔܶ)݀ܽ + ܾ ≤ (ݕ,ݔ)݀ܽ ݇ + ݇ ܾ ⟹ (ݕܶ,ݔܶ)݀ ≤ (ݕ,ݔ)݀ ݇ +
ܾ(݇ − 1)

ܽ , 

which does not imply that we have the ordinary Banach contraction for all self-maps Ton X. So this states that
if the M-metric m and the ordinary metric d even have the same topology, but the Banach contraction of an
M-metric, this does not imply the Banach contraction of the ordinary metric d.

Lemma 1.10 ([2]) Every p metric is a  M  metric.

2. Topology for M-metric space :
It is clear that each M-metric p on X  generates a  T0 topology on  X. The set

݉ܤ} ,ݔ) ߳) ∶ ݔ ∈ ܺ, ߳ > 0߳}, 
where

݉ܤ ,ݔ) ߳) = ൛ݕ ∈ (ݕ,ݔ)݉:ܺ < ݔ݉ ݕ, + ߳ൟ, 

for all ݔ ∈ ܺ,ܽ݊݀ ߳ > 0,   forms the base of ߬݉ . 

Definition 2.1.  Let  (X, m) be an m   metric space. Then
(1) A sequence {xn} in an m  metric space (X, m) converges to a point x  X if and only if

lim
݊→∞

൫݉(݊ݔ , (ݔ ݊ݔ݉− ൯ݔ, = 0  (2.1)
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(2) A sequence {xn} in an m  metric space (X, m) is called an m  Cauchy sequence if

lim
݊ ,݉→∞

൫݉(݊ݔ , ݉ݔ ݊ݔ݉−(  ݉ݔ, ൯ and lim
݊→∞

൫݊ݔ)ܯ , ݉ݔ  ) ݊ݔ݉− ൯  (2.2)ݔ,

in this space exists(and are finite).
(3) An m metric space  (X, m)  is said to be complete if every  m  Cauchy sequence {xn} in X  converges with

respect to  m, to a point x  X such that

lim
݊→∞

൫݉(݊ݔ (ݔ, ݊ݔ݉− ൯ݔ, = 0   and lim
݊→∞

൫݊ݔ)ܯ , ݊ݔ݉−(ݔ ൯ݔ, = 0 

Lemma 2.2
Let (X, m) be an m metric space. Then
(i)   {xn} is a Cauchy sequence in (X, m) if and only if it is a Cauchy sequence in the metric space (X, mw).

(ii) An m metric space (X, m) is complete if and only if the metric space (X, mw) is complete. Furthermore

 lim
݊⟶∞

݊ݔ)ݓ݉ , (ݔ = 0 ⟺ ቀ lim
݊→∞

݉ ݊ݔ) , (ݔ ݊ݔ݉− ቁݔ, = 0 and ቀ lim
݊→∞

ܯ ݊ݔ) , ݊ݔ݉−(ݔ ቁݔ, = 0 

Likewise the above definition holds also for ms.

Lemma 2.3
Assume that ݊ݔ → ݊ݔ ݀݊ܽ ݔ → ݊ ݏܽ ݕ → ∞   in a M  metric space (X, m).  Then

lim
݊→∞

൫݉(݊ݔ , ݕ݊ ݊ݔ݉−( ݊ݕ, ൯ = (ݕ,ݔ)݉ ݕݔ݉− . 
Proof: We have

ห൫݉(݊ݔ , ݕ݊ ) ݊ݔ݉− ݊ݕ, ൯ − ,ݔ)݉) ݔ݉−(ݕ ห(ݕ, ≤ ൫݉(݊ݔ (ݔ, ݊ݔ݉− +൯ݔ, ,ݕ)݉) ݕ݊ ) ݕ݉− ݊ݕ, ). 
From lemma 5.2.2 we can deduce the following lemma.

Lemma 2.4
Assume that ݊ݔ → ݊ ݏܽ ݔ → ∞  in an M  metric space (X, m).
Then

lim
݊→∞

(݉ ݊ݔ) (ݕ, ݊ݔ݉− (ݕ, = (ݕ,ݔ)݉ ݔ݉− ݕ,  

for all y  X.

Lemma 2.5

Assume that ݊ݔ → ݊ݔ ݀݊ܽ ݔ → ݊ ݏܽ ݕ → ∞  in as n m  metric space (X, m). Then ݉(ݔ, (ݕ = ݕݔ݉  .
Further if ݉(ݔ, (ݔ = ,ݕ)݉ .then x = y  ,(ݕ

Proof:
By lemma 2.2 we have

0 = lim
݊→∞

൫݉(݊ݔ , ݊ݔ݉−(݊ݔ ݊ݔ, ൯ = ,ݔ)݉ (ݕ ݕݔ݉− . 

Lemma 2.6 Let {xn} in an m  metric space  (X, m) such that ∃ ݎ ∈ [0, 1)  such that
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,1+݊ݔ)݉ (݊ݔ ≤ ݊ݔ)݉{݊ݔ}ݎ , ݊∀      (1−݊ݔ ∈ ܰ  (2.3)
Then

(a)   lim
݊→∞

݊ݔ)݉ (1−݊ݔ, = 0 

(b)   lim
݊→∞

݊ݔ)݉ , (݊ݔ = 0 

(c)   lim
݉ ,݊→∞

݉ݔ݉ ݊ݔ, = 0

(d)  {xn}  is an m  Cauchy sequence.

Proof:   From (2.3) we have,

݊ݔ)݉ , (1−݊ݔ ≤ ,1−݊ݔ)݉ݎ (2−݊ݔ ≤ ,2−݊ݔ)2݉ݎ (3−݊ݔ ≤ ⋯ ≤ 0ݔ)݉݊ݎ  (1ݔ,

Thus lim
݊→∞

݊ݔ)݉ , (1−݊ݔ = 0 .
Which implies (a).
To prove (b) , from (m2) and (a) we have

lim	min 
݊→∞

݊ݔ)݉} ,1−݊ݔ)݉,(݊ݔ, {(1−݊ݔ = lim
݊→∞

1−݊ݔ݊ݔ݉ ≤ lim
݊→∞

݊ݔ)݉ , (1−݊ݔ = 0 
That is (b) holds.
Clearly, (c) holds, since  lim

݊→∞
݊ݔ)݉ (݊ݔ, = 0 

Theorem 2.7
The topology m is not Hausdorff.

Theorem 2.8
Let (X, m) be a complete M-metric space and ܶ:ܺ → ܺ  be mapping satisfying the following condition:

 ݇ ∈ ቂ0, 1
2
ቁ such that ݉(ܶݕܶ,ݔ) ≤ ݇൫݉(ݔܶ,ݔ) + ݕ,ݔ ∀,൯(ݕܶ,ݕ)݉ ∈ ܺ.  (2.4)

Then T has a unique fixed point.

3. Main Result and fixed point theorems

The following definition is new version of the definition in9 for an M-metric space.

Definition 3.1 A Meir-Keeler mapping is a mapping ܶ:ܯ → on an M-metric space (X, M) such that  ܯ

∀ ߳ > ߜ∃ 0 > 0  such that

,ݔ ∀ ݕ ∈ ܺ ܽ݊݀ ߳ ≤ ,ݔ)݉ (ݕ < ߳ + ߜ ⟹ (ݕܶ,ݔܶ)݉ <  ߳  (3.1)

Theorem 3.2  Let (X, M) be a complete M   metric space and let  T  be a mapping from X  onto itself satisfying
the following condition:
∀ ߳ > ߜ∃ 0 > 0 such that  ∀ ݔ, ݕ ∈ ܺ ܽ݊݀ ߳ ≤ ,ݔ)݉ (ݕ < ߳ + ߜ ⟹ (ݕܶ,ݔܶ)݉ <  ߳ .           (3.2)
Then T has a unique fixed point u  X. Moreover, for all x  X, the sequence {Tn (x)} converges to u.
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Theorem 3.3 Let (X, M) be a complete M  metric space and let  T  be a mapping from  X  onto itself satisfying
the following condition:

∀ ߳ > ߜ∃ 0 > 0 such that  ∀ ݕ,ݔ ∈ ܺ ܽ݊݀ ߳ ≤ ,ݔ)ܥ݇ (ݕ < ߳ + ߜ ⟹ (ݕܶ,ݔܶ)݉ <  ߳ ,  (3.3)

where  ݔ)ܥ, (ݕ = (ݔܶ ݔ)݉  (ݕܶ,ݕ)݉+

for some 0 < ݇ <  
1
3 . Then T has a unique fixed point u  X. Moreover, for all u  X, the sequence  {Tn (x)}

converges to u.

Proof: We first observe that (3.3) trivially implies that T is a strict contraction, i.e. ݔ ≠ ݕ ⟹
(ݕܶ,ݔܶ)݉ < (3.4)  .(ݕ,ݔ)ܥ ݇

Let 0ݔ ∈ ݊ݔ ݀݊ܽ ܺ = so we have  1−݊ݔܶ

(݊ݔ, 1−݊ݔ)ܥ = ݉൫݊ݔ, 1−݊ݔ൯ + ݊ݔ)݉ , (1+݊ݔ

< ݇൫݉൫݊ݔ, 1−݊ݔ൯ + ݊ݔ)݉ ,  ,൯(1+݊ݔ
݊ݔ)݉ , (1+݊ݔ = ݊ݔܶ,, 1−݊ݔܶ)݉  ) 

≤ ݊ݔ, 1−݊ݔ)ܥ ݇  ) 

 ≤ ݇൫݉൫݊ݔ, 1−݊ݔ൯ + ݊ݔ)݉ ,  ,൯(1+݊ݔ
Therefore

݊ݔ)݉ , (1+݊ݔ ≤ 1−݊ݔ)݉ݎ (3.5)  ,(݊ݔ,

where ݎ =
݇

1 − ݇ < 1 . Now by lemma 2.5, {xn} is a Cauchy sequence, and by completeness of X,

1−݊ݔܶ = ݊ݔ → ∗ݔ  for some  ݉ ݊݅ ∗ݔ ∈ ܺ . since T is a continuous mapping, so

݊ݔ = 1−݊ݔܶ → in m now by lemma 2.4 we find  ,∗ݔܶ

(∗ݔܶ, ∗ݔ)݉ =  ,∗ݔܶ,∗ݔ݉

0 = lim
݊→∞

൫݉൫݊ݔ ൯݊ݔܶ, ݊ݔ݉− ݊ݔܶ, ൯ = (∗ݔ,∗ݔ)݉ ∗ݔܶ,∗ݔ݉− = ∗ݔܶ,∗ݔ݉−(∗ݔܶ,∗ݔܶ)݉  
By lemma 2.2 and

(∗ݔܶ, ∗ݔ)݉ = ∗ݔܶ,∗ݔ݉ = (∗ݔܶ,∗ݔܶ)݉ = .(∗ݔ,∗ݔ)݉

So ݔ∗ = ..Uniqueness by the contraction (10) is clear .∗ݔܶ

Put

,ݔ)ܥ (ݕ = (ݕ,ݔ)݉ +
൫1 + (ݕܶ.ݕ)൯݉(ݔܶ,ݔ)݉

1 + (ݕ,ݔ)݉
+
(ݕܶ,ݕ)݉ (ݔܶ,ݔ)݉

1 + (ݕܶ,ݕ)݉
 

Theorem 3.4 Let (X, M) be a complete M  metric space and let  T  be a mapping from X onto itself satisfying
the following condition:
∀ ߳ > ߜ∃ 0 > 0 such that  ∀ ݕ,ݔ ∈ ܺ ܽ݊݀ ߳ ≤ (ݕ,ݔ)ܥ݇ < ߳ + ߜ ⟹ (ݕܶ,ݔܶ)݉ <  ߳ ,         (3.6)
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for some  0 < ݇ <  
1
3

 . Then T has a unique fixed point u  X. Moreover, for all x  X, the sequence   {Tn(x)}

converges  to u.

Proof: We first observe that (3.6) trivially implies that T is a strict   contraction, i.e.

ݔ ≠ ݕ ⟹ (ݕܶ,ݔܶ)݉ < ,ݔ)ܥ ݇ (3.7)  .(ݕ

Let 0ݔ ∈ ݊ݔ ݀݊ܽ ܺ = so we have  1−݊ݔܶ

, 1−݊ݔ)ܥ (݊ݔ = ݉൫݊ݔ, 1−݊ݔ൯ +
൫1 + ,1−݊ݔ)݉ ݊ݔ)൯݉(݊ݔ , (1+݊ݔ

1 + ,1−݊ݔ)݉ (݊ݔ
+
,1−݊ݔ)݉ ݊ݔ)݉(݊ݔ , (1+݊ݔ

1 + ݊ݔ)݉ , (1+݊ݔ  

<  ݉൫݊ݔ, 1−݊ݔ൯ + ݊ݔ)݉ , (1+݊ݔ +
1−݊ݔ)݉ ݊ݔ)݉(݊ݔ, (1+݊ݔ,

݊ݔ)݉ (1+݊ݔ,  

< ݇൫2݉൫݊ݔ, 1−݊ݔ൯ + ݊ݔ)݉ , , ൯(1+݊ݔ

݊ݔ)݉ , , 1−݊ݔ(1+݊ݔ = ݊ݔܶ,, 1−݊ݔܶ)݉  )
≤ ݊ݔ, 1−݊ݔ)ܥ ݇  ) 
≤ ݇൫2݉൫݊ݔ, 1−݊ݔ൯+ ݊ݔ)݉ , , ൯(1+݊ݔ

Therefore

݊ݔ)݉ , (1+݊ݔ ≤ 1−݊ݔ)݉ݎ (3.8) ,(݊ݔ,

where ݎ =
2݇

1 − ݇ < 1 . Now by lemma 2.5, {xn}  is a Cauchy sequence, and by completeness of

1−݊ݔܶ ,ܺ = ݊ݔ → ∗ݔ for some  ݉ ݊݅ ∗ݔ ∈ ܺ . Since T is a continuous mapping , so

݊ݔ = 1−݊ݔܶ → in m now by lemma 2.4 we find  ,∗ݔܶ

(∗ݔܶ, ∗ݔ)݉ = ∗ݔܶ,∗ݔ݉ , 

           0 = lim
݊→∞

൫݉൫݊ݔ ൯݊ݔܶ, ݊ݔ݉− ݊ݔܶ, ൯ = ,∗ݔ)݉ (∗ݔ ∗ݔܶ,∗ݔ݉− = (∗ݔܶ,∗ݔܶ)݉ ∗ݔܶ,∗ݔ݉−  
By lemma 2.2 and

(∗ݔܶ, ∗ݔ)݉ = ∗ݔܶ,∗ݔ݉ = (∗ݔܶ,∗ݔܶ)݉ = ,∗ݔ)݉ . (∗ݔ
So ݔ∗ = ..Uniqueness by the contraction (3.7) is clear   .∗ݔܶ

Corollary 3.5(Gupta and Saxena6) :
Let (X, d) be a complete metric space and T be a continuous mapping from X onto itself. Assume that T satisfies

,ݔ ∀ ݕ ∈ ܺ , ݔ ≠ ݕ ⟹ (ݕܶ,ݔܶ)݀ <  .(ݕ,ݔ)ܥ ݇

where 0 < ݇ <  
1
3

  is a constant. Then T  has a unique fixed point u  X.  Moreover, for all x  X, the sequence

{Tn (x)} converges to u.
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4.  Applications :
In this section, after an idea of Samet et al.10, we shall state an integral version of the Gupta-Saxena result.

Theorem 4.1
Let (X, m) be an M  metric space and let T be a self-mapping defined on X. Assume that there exists a function

߮: [0,∞) →  0,∞)  satisfying following condition

(1)  ߮(0) = ݐ 0ܽ݊݀ > 0 ⟹ (ݐ)߮  > 0 
(2)  ∅  is nondecreasing and right continuous;
(3)  for every   ߳ > 0 , there exists ߜ > 0  such that

߳ ≤ ߮൫݇ (ݕ,ݔ)ܥ൯ < ߳ + ߜ ⟹ ߮൫݉(ܶݕܶ,ݔ)൯ < ߳, (4.1)

for some  0 < ݇ <  
1
3

    and  ∀ ݕ,ݔ ∈ ݔ  ℎݐ݅ݓ, ܺ ≠  ݕ
Then (3.6) is satisfied.

Proof:
Fix ߳ > (߳)߮ ݋ݏ 0 > 0  Hence by (4.1) ∃ 1ߜ > 0  such that

,ݔ ∀    ݕ ∈ ݔ  ℎݐ݅ݓ, ܺ ≠ (߳)߮,ݕ ≤ ߮൫݇ݔ)ܥ, ൯(ݕ < ߮(߳) + 1ߜ ⟹߮൫݉(ܶݕܶ,ݔ)൯ <  ߮(߳)    (4.2)

According to the right continuity of ∅ 
ߜ ∃ > 0,߮(߳ (1ߜ + < ߮(߳) +  .ߜ 

Noe for ݔ, ݕ ∈ ܺ  with x  y, and fixed

߳ ≤ ,ݔ)ܥ ݇ (ݕ <  ߳ + (4.3)           ,ߜ

Since ∅  is nondecreasing mapping, we have

߮(߳) ≤ ߮൫݇ݔ)ܥ, ൯(ݕ <,߮(߳ + (1ߜ  < ߮(߳) +  .ߜ 
So we get

߮൫݉(ܶݕܶ,ݔ)൯ <  ߮(߳) ,
which implies that  ݉ (ݕܶ,ݔܶ) < ߳ . 

Corollary 4.2
Let (X, m) be an M   metric space and let T be a self-mapping defined on X. Let  h: [0, )  0, )  be a locally
integrable function such that

ݐ  (1) > 0 ⟹න ℎ(ݏ)݀ݏ > 0;  
ݐ

0

(2)  For every ߳ > 0,  there exists ߜ > 0  such that

1
݇
߳ ≤ ∫ ℎ(ݏ)݀ݔ)ܥݏ (ݕ,

0 < 1
݇
߳ + ߜ ⟹ ∫ ℎ(ݏ)݀ݏ

1
ݔܶ)݉݇ (ݕܶ,

0 < 1
݇
߳, (4.4)

for some   0 < ݇ <  
1
3

    and  ∀ ݕ,ݔ ∈ ݔ  ℎݐ݅ݓ, ܺ ≠  ݕ
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Then (3.6) is satisfied.
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