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Abstract

In this paper, we shall establish some stability results for Picard and Mann iteration processes in metric
space and normed linear space by employing a set-valued contractive condition of integral type.

1. Introduction

In this paper we shall establish some stability results for Picard and Mann iteration processes in
metric space and normed linear space by employing a contractive condition of integral type. Our results are
generalizations and extensions of some of the results of Berinde2, Osilike15, Osilike and Udomene14, Rhoades16,
Rhoades18, Harder and Hicks7,  as well as some of the results of the author8,12,13.

2.  Preliminaries :
There are several iteration processes in the literature for which the fixed points of operators have been

approximated over the years by various authors. In a complete metric space, the Picard iteration process
0=݊{݊ݔ}

∞    defined by

1+݊ݔ                                           = ݊ݔܶ         ݊ = 0, 1, … … … … … …                         (1)
has been employed to approximate the fixed points of mappings satisfying the inequality relation
(ݕܶ,ݔܶ)݀   ≤ ∋ ݕ,ݔ ∀                 ,(ݕ,ݔ)݀ߙ ߙ  ݀݊ܽ ܧ ∈ [0,1).                                                                      (2)

Condition (2) is called the Banach’s contraction condition. Any operator satisfying (2) is called strict contraction.



370 Neelam Wasnik, et al., JUSPS-A  Vol. 30(9), (2018).

Also, condition (2) is significant in the celebrated Banach’s fixed point theorem1.
In the Banach space setting, we shall state some of the iteration processes generalizing (1) as follows:
For x0  X, the sequence {݊ݔ}݊=0

∞    defined by

1+݊ݔ = (1− ݊ݔ(݊ߙ + ݊ݔܶ݊ߙ ,        ݊ = 0, 1, … … … … ….   (3)

Where {݊ߙ }݊=0
∞ ⊂ [0,1],   is called the Mann iteration process (see Mann [68]).

For x0  X, the sequence {݊ݔ}݊=0
∞   defined by

1+݊ݔ  = (1 − ݊ݔ(݊ߙ + ݊ݖܶ݊ߙ
݊ݖ     = (1 − ݊ߚ ݊ݔ( + ݊ݔܶ݊ߚ

ൠ   ݊ = 0, 1, … … … …      (4)

Where {݊ߙ}݊=0
∞   and {݊ߚ}݊=0

∞   are sequences in [0, 1]; is called the Ishikawa iteration process (see Ishikawa [54
(1974)]).

Kannan10, established an extension of the Banach’s fixed point theorem by using the following

contractive definition for a selfmap T :   there exists ߚ ∈ (0,
1
2

)  such that

(ݕܶ,ݔܶ)݀ ≤ (ݔܶ,ݔ)݀]ߚ + ݕ,ݔ ∀                 [(ݕܶ,ݕ)݀ ∈ (5)   ܧ

Chatterjea5, used the following contractive condition: For a selfmap T : there exists ߛ ∈ (0,
1
2

)  such that

(ݕܶ,ݔܶ)݀ ≤ (ݕܶ,ݔ)݀]ߛ + ݕ,ݔ ∀                 [(ݔܶ,ݕ)݀ ∈ (6)     ܧ

Zamfirescu20, established a nice generalization of the Banach’s fixed point theorem by combining (2), (5) and

(6). That is, for a mapping  ܶ ܧ : → there exist real numbers   satisfying  0   ,ܧ ≤ ߙ ≤ 1, 0 ≤ ߚ ≤ 1
2, 0 ≤ ߛ ≤ 1

2 
respectively such that for each  x, y  E,at least one of the following is true:

(ݕܶ,ݔܶ)݀               (1ݖ) ≤                            (ݕ,ݔ)݀ߙ
(ݕܶ,ݔܶ)݀               (2ݖ) ≤ (ݔܶ,ݔ)݀]ߚ + [(ݕܶ,ݕ)݀
(ݕܶ,ݔܶ)݀              (3ݖ) ≤ (ݕܶ,ݔ)݀]ߛ + .[(ݔܶ,ݕ)݀

ቑ  (7)

The mapping ܶ: ܧ → satisfying (7) is called the Zamfirescu contraction. Any mapping satisfying condition  ,ܧ
(z2)  of  (7) is called a Kannan mapping, while the mapping satisfying condition (z3) is called Chatterjea operator.
The contractive condition (7) implies

ݔܶ‖  − ‖ݕܶ ≤ ݔ‖ߜ2 − ‖ݔܶ + ݔ‖ߜ − ݕ,ݔ ∀     ,‖ݕ ∈ (8)   ,ܧ

Where  ߜ = ݔܽ݉ ൜ߙ,
ߚ

1− ߚ
,
ߛ

1 − ൠߛ
,    0 ≤ ߜ ≤ 1. 

The following definition of stability of iteration process due to Harder and Hicks7, shall be required in the
sequel.

2.1 Definition. Let (E, d) be a complete metric space and ܶ: ܧ → a selfmap of  E. suppose that   ܧ

ܶܨ = ݌} ∈ ݌ܶ|ܧ = 0=݊{݊ߙ} is the set of fixed points of  T : Let   {݌
∞ ⊂ be the sequence generated by an  ܧ

iteration procedure involving T which is defined by
1+݊ݔ = ݂(ܶ, ݊        ,(݊ݔ = 0, 1, 2, … … … … … …   (9)
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Where x0  X is the initial approximation and f is some function. Suppose {݊ݔ}݊=0
∞   converges to a fixed point

p of  T.

Let {݊ݕ}݊=0
∞ ⊂ ݊ߝ and set ܧ = ݀൫1+݊ݕ ݊     ,൯(݊ݕ,ܶ)݂, = 0, 1, 2, … … …   Then, the iteration procedure

(9) is said to be T  stable or stable with respect to T if and only if lim
݊→∞

݊ߝ = 0  implies lim
݊→∞

ݕ݊ =  .݌

If in (9),  ݂(ܶ, ݊ݔ ) = ݊ݔܶ , ݊ = 0, 1, 2, …  , then we have the Picard iteration process, while we
obtain the Mann iteration process if

݂(ܶ, ݊ݔ ) = (1 − ݊ݔ(݊ߙ + ݊ݔܶ݊ߙ ,    ݊ = 0, 1, 2, … … ݊ߙ,    … ∈ [0, 1]. 

Rhoades16, extended the results of 7, to the following independent contractive condition: there exists c  [0, 1)
such that
(ݕܶ,ݔܶ)݀ ≤ ܿmax{݀(ݕ,ݔ),݀(ݕܶ,ݔ),݀(ݔܶ,ݕ)},     ∀ ݕ,ݔ ∈ (10)  .ܧ

Moreover, Osilike15, generalized and extended some of the results of Rhoades17, by using a more general
contractive definition than those of Rhoades16,17. Indeed, he employed the following contractive definition:

there exists  ܽ ∈ [0, ܮ    ,[1 ≥ 0   such that
(ݕܶ,ݔܶ)݀ ≤ (ݔܶ,ݔ)݀ܮ + ,(ݕ,ݔ)݀ܽ ݕ,ݔ ∀ ∈ (12)         .ܧ

In a recent paper of Branciari4, a generalization of Banach1, was established. In that paper, Branciari4, employed

the following contractive integral inequality condition: there exists ܿ ∈ [0, 1)  such that  ∀ ݕ,ݔ ∈ we have  ,ܧ

∫ ((ݕ)݂,(ݔ)݂)݀ݐ݀(ݐ)߮
0 ≤ ܿ ∫ ݔ)݀ݐ݀(ݐ)߮ (ݕ,

0 ,             (13)

Where  ߮ ∶  ℝ+ → ℝ+  is a Lebesgue-integrable mapping which is summable, nonnegative and such that for

each ߝ > 0,න ݐ݀(ݐ)߮
ߝ

0
> 0. 

Rhoades19, used the conditions

 ∫ ((ݕ)݂,(ݔ)݂)݀ݐ݀(ݐ)߮
0 ≤ ݇ ∫ ݔ)݉ݐ݀(ݐ)߮ (ݕ,

0 ݕ,ݔ ∀    , ∈ (14)  ,ܧ

where ݉(ݕ,ݔ) = ݔܽ݉ ቊ݀(ݕ,ݔ),݀((ݔ)݂,ݔ),݀((ݕ)݂,ݕ),
((ݕ)݂,ݔ)݀ + ((ݔ)݂,ݕ)݀

2
ቋ, 

and     ∫ ((ݕ)݂,(ݔ)݂)݀ݐ݀(ݐ)߮
0 ≤ ݇ ∫ ݔ)ܯݐ݀(ݐ)߮ (ݕ,

0 ݕ,ݔ ∀    , ∈ (15)                                                   ,ܧ

with (ݕ,ݔ)ܯ =  ,{((ݔ)݂,ݕ)݀,((ݕ)݂,ݔ)݀,((ݕ)݂,ݕ)݀,((ݔ)݂,ݔ)݀,(ݕ,ݔ)݀}ݔܽ݉

where k  [0,1) and  ߮ ∶  ℝ+ → ℝ+ in both cases is as defined in (14). Condition (16) is the integral form of
Ciric’s condition in  Ciric6.

Following Branciari4, and Rhoades19, we now state the following contractive conditions of integral
type which shall be employed in establishing our results.

For a self-mapping T : E  E,  there exist a real number k  [0,1)  and monotone increasing functions

߰,ݒ ∶  ℝ+ → ℝ+  such that ߰ (0) = 0 and ∀ ݕ,ݔ ∈ we have  ,ܧ

 ∫ ݔܶ)݀(ݐ)ݒ݀(ݐ)߮ (ݕܶ,
0 ≤ ߰ቀ∫ ݔ)݀(ݐ)ݒ݀(ݐ)߮ ݔܶ, )

0 ቁ + ݇ ∫ ݔ)݀(ݐ)ݒ݀(ݐ)߮ (ݕ,
0 ,                                (16)



where  ߮ ∶  ℝ+ → ℝ+ is a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and such
that for each

ߝ > 0,න (ݐ)ݒ݀(ݐ)߮
ߝ

0
> 0. 

In this paper, we shall consider the Picard and Mann iteration processes to establish some stability
results for self-mappings in metric space and normed linear space by employing the contractive condition of
integral type defined in (16).
We shall require the following lemmas in the sequel.

2.2 Lemma. (Berinde2,3). If is a real number such that 0  < 1, and {݊ߝ′ }݊=0
∞    is a sequence of positive

numbers such that lim
݊→∞

′݊ߝ = 0, t  then for any sequence of positive numbers  {݊ݑ}݊=0
∞    satisfying

1+݊ݑ ≤ ݊ݑߜ + ′݊ߝ ,    ݊ = 0, 1, 2, … … …    , 
We have lim

݊→∞
݊ݑ = 0. 

2.3 Lemma. Let (E, d)  be a complete metric space and  ߮ ∶  ℝ+ → ℝ+ is a Lebesgue-Stieltjes integrable

mapping which is summable, nonnegative and such that for each ߝ > 0,න (ݐ)ݒ݀(ݐ)߮
ߝ

0
> 0.  Suppose that

0=݊{݊ݑ}
∞ , 0=݊{݊ݒ}

∞ ⊂ and {ܽ݊}݊=0 ܧ
∞ ⊂ (0, 1)  are sequence such that

ቤ݀(݊ݑ (݊ݒ, −න (ݐ)ݒ݀(ݐ)߮
݊ݑ)݀ ݊ݒ, )

0
ቤ  ≤  ܽ݊ , 

With lim
݊→∞

ܽ݊ = 0.  Then

݊ݑ)݀ , ݊ݒ )− ܽ݊ ≤ ∫ ݊ݑ)݀(ݐ)ݒ݀(ݐ)߮ ݊ݒ, )
0 ≤ ݊ݑ)݀ , ݊ݒ ) + ܽ݊ .        (17)

Proof. By letting

݊ݑ)݀  (݊ݒ, − ∫ ݊ݑ)݀(ݐ)ݒ݀(ݐ)߮ ݊ݒ, )
0  

and using the definition of modulus function in |y| yields (17).

3. Main Results

3.1 Theorem. Let  (E, d) be a complete metric space and T : E  E  a selfmap of  E  satisfying condition
(2.1). Suppose T  has a fixed point p. For  0ݔ ∈ 0=݊{݊ݔ} let ,ܧ

∞    be the Picard iteration process defined by (1).
Let ݒ,߰ ∶  ℝ+ → ℝ+  is a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and such

that for each ߝ > 0,න (ݐ)ݒ݀(ݐ)߮
ߝ

0
> 0.  Then, the Picard iteration process is Tstable.

Proof. Let {݊ݕ}݊=0
∞ ⊂ ݊ߝ ݀݊ܽ ܧ = ,1+݊ݕ)݀ ݕ݊ܶ ).   Assume lim

݊→∞
݊ߝ = 0.  Then we shall establish

that lim
݊→∞

ݕ݊ = by using condition (16), Lemma 2.2 and the triangle inequality as follows. Let  ݌

{ܽ݊}݊=0
∞ ⊂ (0, 1)  Then, by Lemma 2.2,  we have
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∫ 1+݊ݕ)݀(ݐ)ݒ݀(ݐ)߮ (݌,
0 ≤ (݌,1+݊ݕ)݀ + ܽ݊  

≤ ቆන (ݐ)ݒ݀(ݐ)߮
݌)݀ (݌ܶ,

0
ቇ+ ݇න (ݐ)ݒ݀(ݐ)߮

݌)݀ ݊ݕ, )

0
+ න (ݐ)ݒ݀(ݐ)߮

݊ߝ

0
+ 3ܽ݊  

    =  ݇න (ݐ)ݒ݀(ݐ)߮
݊ݕ)݀ (݌,

0
+ න (ݐ)ݒ݀(ݐ)߮

݊ߝ

0
+ 3ܽ݊ .              (18)

We can now express (18) in the form 1+݊ݑ ≤ ݊ݑߜ + ′݊ߝ , 

0 ≤ ߜ  = ݇ < ݊ݑ    ,1 = න (ݐ)ݒ݀(ݐ)߮
݊ݕ)݀ (݌,

0

And ′݊ߝ  = ∫ ݊ߝ(ݐ)ݒ݀(ݐ)߮
0 + 3ܽ݊ , 

lim
݊→∞

′݊ߝ = lim
݊→∞

ቆන (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ 3ܽ݊ቇ = 0, 

so that by Lemma 2.2 and the fact that න (ݐ)ݒ݀(ݐ)߮
ߝ

0
> 0,  for each    > 0 we have that lim

݊→∞
∫ ݊ݕ)݀(ݐ)ݒ݀(ݐ)߮ (݌,

0 = 0 

from which it follows that lim
݊→∞

݊ݕ)݀ (݌, = 0,  that is  lim
݊→∞

ݕ݊ =  .݌

Conversely, let  lim
݊→∞

ݕ݊ = Then, by the contractive condition (16), Lemma 2.2 and the triangle inequality  .݌

again, we have

න (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
=  න (ݐ)ݒ݀(ݐ)߮

1+݊ݕ)݀ ݊ݕܶ, )

0
 

≤ න (ݐ)ݒ݀(ݐ)߮
(݌,1+݊ݕ)݀

0
+ ݇න (ݐ)ݒ݀(ݐ)߮

݌)݀ ݊ݕ, )

0
+ 3ܽ݊ → 0 

as  ݊ →  ∞. 
Again, using the condition on   yields lim

݊→∞
݊ߝ = 0. 

3.2 Theorem. Let (ܧ, ‖∙‖) be a normed linear space and T : E  E   a selfmap of  E satisfying condition
(16). Suppose T  has a fixed point p. For  0ݔ ∈ 0=݊{݊ݔ} let ,ܧ

∞    be the Mann iteration process defined by (3),
where {݊ߙ }݊=0

∞  is a sequence in [0, 1] such that 0 < ≥ ߙ ݊ߙ     (݊ = 0, 1, … … ) .

Let ݒ,߰ ∶  ℝ+ → ℝ+  be monotone increasing functions such that ߰(0) = 0 and ߮ ∶  ℝ+ → ℝ+ 
is a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and such that for each

ߝ  > 0,∫ ߝ(ݐ)ݒ݀(ݐ)߮
0 > 0. 

Then, the Picard iteration process is T  stable.

Proof : Suppose that
0=݊{݊ݕ}

∞ ⊂ ,ܧ ݊ߝ = 1+݊ݕ‖  − (1 − ݊ݕ(݊ߙ − ,‖݊ݕܶ݊ߙ ݊ = 0, 1, 2 … … … ..  ,
And let  lim

݊→∞
݊ߝ = 0.  Then we shall establish that lim

݊→∞
݊ݕ = by using condition (16), Lemma 2.2  and the  ݌
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triangle inequality as follows. Let {ܽ݊}݊=0
∞ ⊂ (0, 1)  Then, by Lemma 2.2, we have

∫ ‖݌−1+݊ݕ‖(ݐ)ݒ݀(ݐ)߮
0 ≤ 1+݊ݕ‖]  − (1− ݊ߙ ݕ݊( − ‖݊ݕܶ݊ߙ − ܽ݊] 

+(1 − ݊ݕ‖](݊ߙ − ‖݌ − ܽ݊] + ݊ߙ ݌ܶ‖] − ‖݊ݕܶ − ܽ݊ ] + 3ܽ݊

        ≤ [(1 − ݊ߙ(݇ ]න (ݐ)ݒ݀(ݐ)߮
‖݌−݊ݕ‖

0
+ න (ݐ)ݒ݀(ݐ)߮

݊ߝ

0
+ 3ܽ݊  

         ≤ [(1 − ∫[ߙ(݇ ‖݌−݊ݕ‖(ݐ)ݒ݀(ݐ)߮
0 + ∫ ݊ߝ(ݐ)ݒ݀(ݐ)߮

0 + 3ܽ݊ .    (19)

Expressing (19) in the form 1+݊ݑ ≤ ݊ݑߜ + ′݊ߝ , 

where  0 ≤ ߜ  = (1 − ߙ(݇ < ݊ݑ    ,1 = ∫ ‖݌−݊ݕ‖(ݐ)ݒ݀(ݐ)߮
0

and ′݊ߝ  = න (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ 3ܽ݊ , 

with lim
݊→∞

′݊ߝ = lim
݊→∞

ቆන (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ 3ܽ݊ቇ = 0, 

so that by Lemma 2.2 and the fact that න (ݐ)ݒ݀(ݐ)߮
ߝ

0
> 0,  for each  > 0 we have that lim

݊→∞
න (ݐ)ݒ݀(ݐ)߮
‖݌−݊ݕ‖

0
= 0 

from which it follows that lim
݊→∞

݊ݕ‖ − ‖݌ = 0, that is  lim
݊→∞

݊ݕ =  .݌

Conversely, let  lim
݊→∞

݊ݕ = Then, by the contractive condition (16), Lemma 2.3 and the triangle inequality  .݌

again, we have

     ∫ ݊ߝ(ݐ)ݒ݀(ݐ)߮
0 =  ∫ ݊ߙ−1)−1+݊ݕ‖(ݐ)ݒ݀(ݐ)߮ ݊ݕܶ݊ߙ−݊ݕ( ‖

0  

             ≤ න (ݐ)ݒ݀(ݐ)߮
‖݌−1+݊ݕ‖

0
+ [1− (1− නߙ(݇ (ݐ)ݒ݀(ݐ)߮

‖݌−݊ݕ‖

0
+ 3ܽ݊ → 0 

as  n 
3.3 Theorem. Let (X, d)  be a complete metric space and T :  E  E having set valued mapping

ܶ:ܺ → 0ݔ Let p be a fixed point of T. For  (ܺ)ܮܥ ∈ ܺ,  we have a Picard iteration {݊ݔ}݊=0
∞  defined as

1+݊ݔ ∈ ݊ݔܶ ,݊ = 0,1,2, …  If the mapping T satisfies the condition

∫ ݔܶ)ܪ(ݐ)ݒ݀(ݐ)߮ (ݕܶ,
0 ≤ ݇∅ ቀ∫ ݔ)ܦ(ݐ)ݒ݀(ݐ)߮ (ݔܶ,

0 ቁ ∫ ݕ)ܦ(ݐ)ݒ݀(ݐ)߮ ݔܶ, )
0 ,    (20)

such that ∅(0) = 1  where ݒ,∅ ∶  ℝ+ → ℝ+  be monotone increasing function and ߮:ℝ+ → ℝ+   a Lebesgue-

Stieltjes integrable mapping which is summable, nonnegative and for each > 0,න (ݐ)ݒ݀(ݐ)߮
ߝ

0
> 0.  Then, the Picard

iteration process is T stable.

Proof: Let  {݊ݕ}݊=0
∞ ⊂ ݊ߝ ݀݊ܽ ܺ = ݕ݊ܶ,1+݊ݕ)ܪ ). 

Assume lim
݊→∞

݊ߝ = 0.  Then we shall establish that lim
݊→∞

ݕ݊ = ݊ܽ} Let .݌ }݊=0
∞ ⊂ (0, 1)   Then, by Lemma 2.3
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and condition (20), we have

න (ݐ)ݒ݀(ݐ)߮
(݌,1+݊ݕ)݀

0
≤ 1+݊ݕ)݀ (݌, + ܽ݊  

    ≤ (݊ݕܶ,1+݊ݕ)ܪ + ݕ݊ܶ)ܦ (݌, + ܽ݊  

1+݊ݕ) ݕ݊ܶ, ) ݊ݕܶ)ܪ+ (݌ܶ, + ܽ݊    
≤ (݊ݕܶ,1+݊ݕ)ܪ + ݕ݊ܶ)ܦ (݌, +

     ≤ 1+݊ݕ)ܪ ݕ݊ܶ, ) ݊ݕܶ)ܪ+ (݌ܶ, + ܽ݊

≤ ቆන (ݐ)ݒ݀(ݐ)߮
1+݊ݕ)ܪ ݊ݕܶ, )

0
ቇ +න (ݐ)ݒ݀(ݐ)߮

݊ݕܶ)ܪ (݌ܶ,

0
+ 3ܽ݊  

≤ න (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ ݇∅ ቆන (ݐ)ݒ݀(ݐ)߮

݌)ܦ (݌ܶ,

0
ቇන (ݐ)ݒ݀(ݐ)߮

݌ܶ)ܦ ݊ݕ, )

0
+ 3ܽ݊  

≤ න (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ ݇∅(0)න (ݐ)ݒ݀(ݐ)߮

݌)݀ ݊ݕ, )

0
+ 3ܽ݊  

 ≤ ∫ ݊ߝ(ݐ)ݒ݀(ݐ)߮
0 + ݇ ∫ ݌)݀(ݐ)ݒ݀(ݐ)߮ ݊ݕ, )

0 + 3ܽ݊  (21)

We can now express (21) in the form 1+݊ݑ ≤ ݊ݑߜ + ′݊ߝ , 

0 ≤ ߜ  = ݇ < ݊ݑ    ,1 = න (ݐ)ݒ݀(ݐ)߮
݊ݕ)݀ (݌,

0
 

′݊ߝ        = න (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ 3ܽ݊ , 

lim
݊→∞

′݊ߝ = lim
݊→∞

ቆන (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
+ 3ܽ݊ቇ = 0, 

so that by Lemma 2.2 and the fact that ∫ ߝ(ݐ)ݒ݀(ݐ)߮
0 > 0, for each ߝ > 0  we have that

lim
݊→∞

න (ݐ)ݒ݀(ݐ)߮
݊ݕ)݀ (݌,

0
= 0. 

From this we can have,  lim
݊→∞

݊ݕ =  .݌

Conversely, let lim
݊→∞

݊ݕ = Then, by the contractive condition (19), Lemma 2.3 and the triangle inequality, we   .݌

have,

න (ݐ)ݒ݀(ݐ)߮
݊ߝ

0
=  න (ݐ)ݒ݀(ݐ)߮

݊ݕܶ,1+݊ݕ)ܪ )

0
 

≤ න (ݐ)ݒ݀(ݐ)߮
݀ 1+݊ݕ) (݌,

0
  +     ݇ න (ݐ)ݒ݀(ݐ)߮

݌)ܦ ݊ݕܶ, )

0
+ 3ܽ݊  

 ≤ න (ݐ)ݒ݀(ݐ)߮
1+݊ݕ)݀ (݌,

0
+  ݇∅ ቆන (ݐ)ݒ݀(ݐ)߮

݌)ܦ (݌ܶ,

0
ቇන (ݐ)ݒ݀(ݐ)߮

݌ܶ)ܦ ݊ݕ, )

0
+ 3ܽ݊  

≤  න (ݐ)ݒ݀(ݐ)߮
1+݊ݕ)݀ (݌,

0
+ ݇∅(0)න (ݐ)ݒ݀(ݐ)߮

݌ܶ)ܦ ݊ݕ, )

0
+ 3ܽ݊  
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≤ න (ݐ)ݒ݀(ݐ)߮
1+݊ݕ)݀ (݌,

0
+ ݇න (ݐ)ݒ݀(ݐ)߮

݌)݀ ݊ݕ, )

0
+ 3ܽ݊  

→ → ݊   ݏܽ  0  ∞. 
Thus,   lim

݊→∞
݊ߝ = 0. 

Hence Proved.
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