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Abstract

A Ricci soliton is a generalization of an Einstein metric. Theoretical physicists have also been looking
into the equation of Ricci soliton in relation with string theory. In the present paper we characterize Kenmotsu
manifolds admitting a special type of Ricci soliton, called *-Ricci soliton. The main Theorem of the paper states
that if a Kenmotsu manifold M admit *-Ricci soliton then, M is either D-Homothetic to an Einstein manifold or
the soliton vector field leaves  invariant.
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Introduction

Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold
݃ with ( ߣ ,ܸ ,݃) A Ricci soliton is a triple .( ݃ ,ܯ)   a Riemannian metric, V a vector field, and  a real scalar such
that

Lܸ݃ + 2ܵ + 20 = ݃ߣ  (1.1)
where S is a Ricci tensor of M and LV denotes the Lie derivative operator along the vector field V. The Ricci
soliton is said to be shrinking, steady, and expanding accordingly as  is negative, zero, and positive,
respectively1.

In 1972, Kenmotsu2 studied a class of contact Riemannian manifolds satisfying some special conditions
and this manifold is known as Kenmotsu manifolds. The authors in 3–7 have studied Ricci solitons in contact
and Lorentzian manifolds. G. Kaimakamis and K. Panagiotidou8 initiated the notion of  *-Ricci soliton where
they essentially modified the definition of Ricci soliton by replacing the Ricci tensor Ric in (1.1) with the *-Ricci
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tensor Ric*. A pseudo-Riemannian metric g on a smooth manifold M is called a *-Ricci soliton if there exists a
smooth vector field V, such that

2
1

(£V g)(X, Y ) + Ric*(X, Y ) = g(X, Y ), (1.2)

where

 1*( , ) ( , ( , ) )
2

Ric X Y trace R X Y  (1.3)

for all vector fields X, Y on M .
The notion  of  *-Ricci tensor was first introduced by S. Tachibana9 on almost Hermitian manifolds and further
studied by T. Hamada10 on real hypersurfaces of non-flat complex space forms.

In the present paper, we have studied *-Ricci soliton on Kenmotsu  manifold and prove the following
result:

Theorem: Let M ( g) be a (2n + 1)-dimensional Kenmotsu manifold. If g is a  *-Ricci soliton on
M, then either M is D-homothetic to an Einstein manifold, or the Ricci tensor of M with respect to canonical
paracontact connection vanishes. In the first case, the soliton vector field is Killing and in the second case,
the soliton vector field leaves  invariant.

Preliminaries :
Let M be an almost contact manifold equipped with an almost contact metric structure

( , , , )g   consisting of a (1,1) tensor field  , a vector field   , a 1-form   and a compatible Riemannian
metric g satisfying

I     ,  ( ) 1   , ( ) 0    0   ,                    (2.1)

( , ) ( , ) ( ) ( )g X Y g X Y X Y                                      (2.2)

( , ) ( , ), ( , ) ( )g X Y g X Y g X X    

 for all  , ( ).X Y M
an almost contact metric manifold M is called a kenmotsu manifold if it satisfies2

( ) ( , ) ( ) ,X Y g X Y Y X                        (2.3)

Where      is Levi-Civita connection of the Riemannian metric g.
From the above equation it follows that

 ( ) ,X X X                                                            (2.4)

 ( ) ( , ) ( ) ( )X Y g X Y X Y                                           (2.5)

Moreover, the curvature tensor R and Ricci tensor S satisfy2

( , ) ( ) ( , )R X Y Y X g X Y    (2.6)    ߦ (ܻ ,ܺ)݃ − ܺ(ܻ)ߟ = ܻ(ܺ,ߦ) ܴ ,ߦ (ܺ)ߟ −ܺ = ߦ(ܺ,ߦ) ܴ ,

Let (݃, ܸ, ߣ ) be a Ricci soliton in an n-dimensional Kenmotsu manifoldM 11. From (2.4) we have

               (L݃ߦ) (ܺ, ܻ) = [(ܻ) ߟ (ܺ)ߟ − (ܻ ,ܺ)݃]2 
From (1.1) and with above relation we have15



Sushil  Shukla, et al.,  JUSPS-A  Vol. 30(11), (2017). 403

 (ܻ) ߟ (ܺ)ߟ + (ܻ ,ܺ) ݃ (1 + ߣ)− = (ܻ ,ܺ) ܵ                                      
Which yields
                    ܳ  ߦ (ܺ)ߟ + ܺ(1 + ߣ)− = ܺ
(2.7)                                             (ܺ)ߟߣ− =(ߦ ,ܺ) ܵ                               

Or Qξ= - ߣξ                                              (2.8)
for any X, Y on M .
Here, R denotes the curvature tensor of g and S denotes the Ricci tensor defined by S(X, Y ) = g(QX, Y ), where
Q is the Ricci operator.

Lemma 1.  Let M (, g) be a Kenmotsu  manifold. Then

(i) ∇ξQ = 0, and (ii) (∇XQ)ξ = QφX + ߣφX.

Proof: Since  is Killing, we have £V Ric = 0. This implies (£ Q)X = 0 for any vector field X on M . From
which it follows that

0 = £ξ(QX) − Q(£ξX) 

= ∇ξQX + ∇QXξ − Q(∇ξX) + Q(∇Xξ) 
= (∇ξQ)X + ∇QXξ + Q(∇Xξ).
Using (2.4) in the above equation gives ∇ξQ = Qφ − φQ . Since the Ricci operator Q commutes with  on
Kenmotsu manifold, we have (i). Next, taking covariant differentiation of (2.8) along an arbitrary vector field X
on M and using (2.4), we obtain (ii). This completes the proof.
If the Ricci tensor of a Kenmotsu manifold M is of the form
Ric(X, Y ) = Ag(X, Y ) + B(X)(Y ),
for any vector fields X, Y on M , where A and B being constants, then M is called an -Einstein manifold.
The 1-form  is determined up to a horizontal distribution and hence D = Ker are connected by     =   for a
positive smooth function

 on  a  paracontact  manifold  M.   This paracontact form  η̄    defines  the structure tensor (φ̄, ξ̄, ḡ)  corresponding
to  using the condition given in the paper 11.  We call the transformation of the structure tensors given by
Lemma 4.1 of 11 a gauge (conformal) transformation of paracontact pseudo-Riemannian structure. When  is
constant this is a D-homothetic transformation. Let M (, , , g) be a paracontact manifold and

 21, , , ( ) . 0g g const           


        

to be  D-homothetic  transformation.  Then (φ̄, ξ̄, η̄, ḡ)  is also a para contact structure. Using the formula
appeared in 11 for D-homothetic deformation, one can easily verify that if M (, , , g) is a (2n+1) - dimensional
(n > 1) -Einstein Kenmotsu structure with scalar curvature r  2n, then there exists  a constant   such  that

M (φ̄, ξ̄, η̄, ḡ)  is an Einstein  Kenmotsu structure. So we have following result.

Lemma 2. Any (2n +1)-dimensional -Einstein Kenmotsu manifold with scalar curvature not equal to
2n is D-homothetic to an Einstein manifold.



Proof of Theorem :
First, we state and prove some lemmas which will be used to prove Theorem.
Lemma 3. The *-Ricci tensor on a (2n + 1)-dimensional Kenmotsu manifold M (, , , g) is given by

Ric*(X, Y ) = −Ric(X, Y ) − (2n − 1)g(X, Y ) − η(X)η(Y )  (3.1)
for any vector fields X, Y on M .

Proof: The Ricci tensor Ric of a (2n + 1)-dimensional Kenmotsu manifold M (, , , g) satisfies the
relation (c.f. Lemma 3.15 in 11):

 2 1

1

( , ) ( , , , ) (2 1) ( , ) ( ) ( )
n

i i
i

Ric X Y R X Y e e n g X Y X Y   




                                        (3.2)

for any vector fields X, Y  on M .  By the skew-symmetric property of
, we have

 2 1 2 1 2 1

1 1 1

( , , , ) ( , , , ) ( ( , ), , )
n n n

i i i i i i
i i i

R X Y e e R X Y e e g R X Y e e     
  

  

    
By this, (3.2) becomes

 2 1

1

( ( , ), , ) 2 ( , ) 2(2 1) ( , ) 2 ( ) ( )
n

i i
i

g R X Y e e Ric X Y n g X Y X Y   




      (3.3)

By (1.3) and (3.3), we have (3.1).

Lemma 4. For a Kenmotsu manifold, we have the following relation
(£V η)(ξ) = −η (£V ξ) = λ.  (3.4)

Proof: By virtue of Lemma 3, the *-Ricci soliton equation (1.2) can be expressed as
(£V g)(X, Y) = 2Ric(X, Y) + 2(2n − 1 + λ) g(X, Y) + 2η(X) η(Y).  (3.5)
Taking Y = ξ in (3.5) and using (2.7) we have (£V g) (X, ξ) = 2λη(X). Lie-differentiating the equation η(X) = g(X, ξ)
along V and by (3.5), we have
(£V η)(X) − g(£V ξ, X) − 2λη(X) = 0.         (3.6)

Now, Lie-derivative of g(ξ, ξ) = 1 along V and equation (3.6) completes proof.
Lemma 5. Let M (φ, ξ, η, g) be a (2n + 1)-dimensional Kenmotsu manifold. If g is a *-Ricci soliton, then

M is an η-Einstein manifold and the Ricci tensor can be written as

 
( , ) 2 1 ( , ) 1 ( ) ( )

2 2
Ric X Y n g X Y X Y                 

                                                       (3.7)

for any vector fields X, Y on M .
Proof: Taking covariant differentiation of (3.5) along an arbitrary vector field Z, we get

∇( Z£V g)(X, Y)= 2 ∇{( ZRic)(X, Y ) − g(X, φZ)η(Y ) − g(Y, φZ)η(X)}. (3.8)

According to Yano12, we have
(£V ∇Zg ∇− Z£V g − ∇ [V, Z] g)(X, Y) = −g ((£V ∇) (Z, X), Y) − g ((£V ∇) (Z, Y), X),
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for any vector fields X, Y, Z on M .
 In view of the parallelism of the pseudo-Riemannian metric g, we have from above relation
∇( Z£V g)(X, Y) = g ((£V ∇) (Z, X), Y) + g ((£V ∇) (Z, Y), X).             (3.9)

From (3.8) and (3.9), we have

g ((£V ∇)(Z, X), Y ) + g((£V ∇)(Z, Y ), X) 
∇= 2{( ZRic)(X, Y ) − g(X, φZ)η(Y ) − g(Y, φZ)η(X)}.                (3.10)

Which gives
g((£V ∇)(X, Y ), Z ∇) = −( ZRic)(X, Y ∇) + ( XRic)(Y, Z) 

+ ∇( Y Ric)(Z, X) + 2g(X, φZ)η(Y ) 
+ 2g(Y, φZ)η(X).  (3.11)

Taking ξ  in place of Y in (3.11) and Lemma 1, we get
(£V ∇)(X, Y) = 2(2n − 1)φX + 2QφX.            (3.12)

Differentiating (3.12) covariantly along an arbitrary vector field Y on M and using the relations (2.3) and (2.8), we
have
∇( Y £V ∇)(X, ξ) + (£V ∇)(X, φY ) 

∇= 2{( Y Q)φX + η(X)QY + (2n − 1)η(X)Y + g(X, Y )ξ}.  (3.13)

According to Yano12 we have

(£V R)(X, Y)Z = ∇( X£V ∇)(Y, Z) − ∇( Y £V ∇)(X, Z).  (3.14)
Taking ξ in place of Z in (3.14) and by (3.13), we have

(£V R)(X, Y )ξ + (£V ∇)(Y, φX) − (£V ∇)(X, φY ) 
∇= 2{( XQ)φY ∇− ( Y Q)φX + η(Y )QX − η(X)QY 

+  (2n − 1)(η(Y )X − η(X)Y )}. (3.15)
Taking ξ for Y in (3.15), then using (2.8), (3.12) and Lemma 1, we have (£V R)(X, ξ)ξ = 4{QX + (2n 1)X + η(X)ξ}.

 (3.16)
Taking Lie-derivative of (2.6) along V and by (2.5) and (3.4) we have
(£V R)(X, ξ)ξ = (£V η)(X)ξ − g(£V X, ξ) − 2λX.  (3.17)

Comparing (3.16) with (3.17), and use of (3.6), gives the required result.

Proof of Theorem: By (3.7), the soliton equation (3.5) can be written as
(£V g)(X, Y) = λ {g(X, Y) + η(X) η(Y)}.  (3.18)

Taking Lie-differentiation of (3.7) along the vector field V and using (3.5) we have

 
 

 

)( , ) 1 ( )( )( ) ( )( )( )(£
2

2 1 ( , )

£ £

( ) ( )
2

V V VRic X Y Y X X Y

n g X Y X Y

    


  

    
 
      

 (3.19)

Differentiating (3.7) covariantly along an arbitrary vector field Z on M and using (2.4) we have
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 )( , ) 1 ( , ) ( ) ( , )( ( )

2Z Ric X Y g X Z Y g Y Z X         
 

           (3.20)

By (3.20), equation (3.11) becomes
(£V ∇)(X, Y) = −λ {η(Y) φX + η(X) φY}.  (3.21)
Differentiating (3.21) covariantly along an arbitrary vector field Z on M
and by (2.3) and (2.4), we have
∇( Z£V∇) (X,Y ) = λ{g(Y, φZ)φX + g(X, φZ)φY + g(X, Z)η(Y )ξ

+ g(Y, Z) η(X) ξ  2η(X) η(Y) Z}. (3.22)
Using (3.22) in (3.14) and using (2.4) we have
(£V R)(X, Y)Z = λ{g(φX, Z)φYg(φY, Z)φX + 2g(φX, Y )φZ

+ g(X, Z)η(Y )ξ g(Y, Z)η(X)ξ  2η(Y )η(Z)X
+ 2η(X)η(Z)Y }. (3.23)

Contracting (3.23) over Z, we get
(£V Ric)(Y, Z) = 2λ {g(Y, Z)  (2n + 1)η(Y )η(Z)}. (3.24)

By (3.19) and (3.24), we have

 
   

 

1 ( )( )( ) ( )( )( ) 2 1 ( , ) ( ) ( )
2 2

2 ( , ) (2 1) ( ) (

£

)

£V VY Z Z Y n g Y Z Y Z

g Y Z n Y Z

       

  

              
  

(3.25)

Replacing Y by φ2 Y in (3.25) and then using (2.1) and (3.4) we get

 
1 ( )( ) ( ) 1 2 ( , ) 2 ( ) ( )

2 2
£V Y Z n g Y Z n Y Z 
    

                
(3.26)

By (3.26) and (3.25) and then replacing Z by φZ, we have

 
1 2 ( , ) 0

2
n g Y Z      

                             (3.27)

 As φ(Y, Z) = g(Y, φZ) is non-vanishing everywhere on M, so either λ = 0 or λ = 2 (2n + 1).
Case I: If λ = 0, from (3.18) we have £V g = 0, therefore, V is Killing. From (3.7) we have

Ric(X, Y) =  (2n  1)g(X, Y )  η(X)η(Y ).  (3.28)
Contracting the equation (3.28) we have r = 4n2, where r is the scalar curvature of the manifold M. This shows
that M is a -Einstein manifold with scalar curvature r  2n. So, M is D- homothetic to an Einstein manifold.

Case II:   If λ = 2 (2n + 1), then taking ξ in place of Z in (3.26) and then replace Y by φY, the resulting equation
gives

                                       (
 

2


1)(£V )(Y) = 0.

Since λ = 2(2n + 1), we have λ   2. Thus we have (£V η) (φY) = 0.
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Replacing Y by φY and using (2.1), we have
(£V η)(Y) = 2 (2n + 1) η(X).  (3.29)
Taking exterior differentiation d on (3.29) we have
(£V dη)(X, Y ) = 2(2n + 1)g(X, φY ),  (3.30)
as d commutes with £V .
Taking the Lie-derivative of dη(X, Y) = g(X,  φY ) along the soliton vector  field V provides
(£V dη)(X, Y) = (£V g)(X, φY ) + g(X, (£V φ)Y ).  (3.31)
From (3.18) we have
(£V g)(X, φY ) = 2(2n + 1)g(X, φ).  (3.32)
Using (3.30) and (3.32) in (3.31) we have £V φ = 0. Therefore,  soliton vector field V leaves φ invariant.
Putting λ = 2(2n + 1) in (3.7) we have
Ric(X, Y) = 2g(X, Y ) (2n + 2)η(X)η(Y ).  (3.33)
Contracting (3.33) we obtain r = 2n (i.e., the manifold M cannot be D- homothetic to an Einstein manifold.

Ricci tensor  R̃ ic  of a (2n+1) dimensional Kenmotsu manifold with respect to canonical paracontact

connection     is defined as 11

R̃ic(X, Y) = ( , ) 2 ( , ) (2 2) ( ) ( )Ric X Y g X Y n X Y               (3.34)

        ~
Using (3.33) in (3.34) we have R̃ ic (X, Y) = 0.  Therefore, the Ricci tensor with respect to the connection   
vanishes. This completes the proof of theorem.

References

1. B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci Flow, vol. 77 of Graduate Studies in Mathematics, American
Mathematical Society, Providence, RI, USA, (2006).

2. K. Kenmotsu, “A class of almost contact Riemannian manifolds,” The Tohoku Mathematical Journal, vol.
24, pp. 93–103, (1972).

3. A. M. Blaga, M. C. Crasmareanu, Torse-forming ç-Ricci solitons in almost para- contact ç-Einstein geometry,
Filomat, 31(2), 499–504 (2017).

4. M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio and S. Gavino-Fernandez, Three-dimensional Lorentzian
homogeneous Ricci solitons, Israel J. Math., 188, 385–403 (2012).

5. G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons, Int. J.
Geom. Methods Mod. Phys., 12 (2015), 1550056 [21 pages]

6. G. Calvaruso  and  D. Perrone,  Geometry of H-paracontact metric manifolds, Publ. Math. Debrecen, 86,
325–346 (2015).

7. G. Calvaruso and A. Zaeim, A complete classification of Ricci and Yamabe solitons of non-reductive
homogeneous 4-spaces, J. Geom. Phys., 80, 15–25 (2014).

8. G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space
forms, J. Geom. Phys., 86, 408–413 (2014).

9. S. Tachibana, On almost-analytic vectors in almost Kahlerian manifolds, Tohoku Math. J., 11, 247–265
(1959).

10. T. Hamada, Real hypersurfaces of complex space forms  in  terms  of  Ricci *- tensor, Tokyo J. Math., 25,

Sushil  Shukla, et al.,  JUSPS-A  Vol. 30(11), (2017). 407



473-483 (2002).
11. S. Zamkovoy, Canonical connections on paracontact manifolds,  Ann. Glob. Anal. Geom., 36(1), 37–60

(2009).
12. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, (1970).
13. Sushil Shukla, On relativistic fluid space time admitting heat flux of a generalized recurrent and Ricci

recurrent Kenmotsu manifold, Journal of International Academy Of Physical Sciences 15, 143-146 (2011).
14. Sushil Shukla, On Kenmotsu Manifold, Journal of Ultra Scientist of Physical Sciences 21, 485-490 (2009).
15. C. S. Bagewadi, Gurupadavva Ingalahalli, and S. R. Ashoka, A Study on Ricci Solitons in Kenmotsu

Manifolds, Hindawi Publishing Corporation,ISRN Geometry (2013) http://dx.doi.org/10.1155/2013/412593.
16. D. E. Blair: Riemannian geometry of contact and sympletic manifolds, Progress in Mathematics, 203,

Birkhauser Boston, Inc., Boston (2002).
17. U. C. De and A. K. Mondal, Three dimensional Quasi-Sasakian manifolds and Ricci solitons, SUT J.

Math., 48(1), 71–81 (2012).
18. H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3, 18-24

(2012).
19. S. K. Hui, D. G. Prakasha and D. Chakraborty, Ricci solitons on Kenmotsu manifolds with respect to semi-

symmetric metric connection, National Level conference Proceedings of CCEGR-2016, 6-17.
20. S. K. Hui, S. S. Shukla and D. Chakraborty, -Ricci solitons on -Einstein Kenmotsu manifolds,  Global  J.

Adv. Res. Clas. Mod. Geom., 6(1), 1-6 (2017).
21. S. K. Hui, R. Prasad and D. Chakraborty, Ricci solitons on Kenmotsu manifolds with respect to quarter

symmetric non-metric -connection, GANITA, 67, 195-204 (2017).
22. D. Chakraborty, V. N. Mishra and S. K. Hui, Ricci solitons on three dimensional -Kenmotsu manifolds with

respect to Schouten-van Kampen connection, Journal of Ultra Scientist of Physical Sciences
30(1), 86-91 (2018).

23. S. K. Hui and D. Chakraborty, Ricci almost solitons on concircular Ricci pseudosymmetric -Kenmotsu
manifolds, Hacettepe J. of Math. Stat., doi:10.15672/HJMS.2017.471.

408 JUSPS-A Vol. 30(11), (2018).


