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Abstract

In this study, we discuss the numerical solution of the wave equation subject to non-local conservation
condition, using cubic trigonometric B-spline collocation method (CuTBSM). Consider a vibrating elastic
string of length L which is located on the x-axis of the interval [0, L].

 It is also clear from the examples that the approximate solution is very close to the exact solution. The
technique requires smaller computational time than several other methods and the numerical results are found
to be in good agreement with known solutions and with existing schemes in the literature.
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Introduction

There are quite a number of phenomena in science and engineering which can be modeled by the use
of hyperbolic partial differential equations subject to non-local conservation condition instead of traditional
boundary conditions1 and these arise in the study of chemical heterogeneity2,3, medical science, visco-elasticity,
plasma physics4 and thermo elasticity5,6. This type of problems also arises in non-local reactive transport in
underground water flows in porous media, semi-conductor modeling, non-Newtonian fluid flows and radioactive
nuclear decay in fluid flows7. The temperature distribution of air near the ground over time during calm clear
nights is a good example of such models8. The analysis, development and implementation of numerical methods
for the solution of such problems have received wide attention in the literature.

One of the most interesting equation in physical phenomena is reaction-diffusion equation. Since the
equationis a model equation used in biology, chemistry, metallurgy and combustion, both analytical and numerical
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solutions are searched to investigate new physical phenomena25.
This study deals with the numerical solution of a non-classical diffusion problem with two nonlocal

boundary constraints using cubic trigonometric B-splines. This problem arises in several branches of science.
In particular, electrochemistry1, heat conduction process2, thermo-elasticity3, plasma physics4, semiconductor
modeling5, biotechnology6, control theory, and inverse problems7. The analysis, development, and
implementation of numerical methods for the solution of such diffusion problems have received wide attention
in the literature.

Consider an insulated rod of length L located on the x-axis of the interval [0, L]. Let the rod have a
source of heat.

Let (x, t) denote the temperature in the insulated rod with ends held at constant temperature T1 and T2

and the initial temperature distribution along the rod is g(x). The problem is to study the flow of heat in the rod
and in this paper the partial differential equation governing the flow of heat in the rod is given by the diffusion
equation with specification of energy
ݑ߲
ݐ߲

,ݔ) (ݐ = ∝2 ݑ2߲
ݔ߲ ,ݔ)2 (ݐ + ,ݔ)ݍ 0               (ݐ ≤ ݔ ≤ ,ܮ 0 ≤ ݐ ≤ ܶ                  (1)

With the initial constraints

,ݔ)ݑ ݐ = 0) = ≥0                                   (ݔ)1݃ ݔ ≤ (2)                                    ܮ
And the nonlocal boundary constraints

ξ1ݔ)ݑ = 0, (ݐ + ξ2ݔ)ݑ = 0, (ݐ = ∫ ,ݔ)ݑ(ݔ)2݃ ݔ݀(ݐ + ℎ1(ݐ) = 1ܶ
ܮ

0 , 

ξ3ݔ)ݑ = ,ܮ (ݐ + ξ4ݔ)ݑ = ,ܮ (ݐ =) 0නܮ∫ ,ݔ)ݑ(ݔ)3݃ ݔ݀(ݐ + ℎ2(ݐ) = 2ܶ           0 < ݐ ≤ ܶ
ܮ

       (3)

where , i = 1, 2, 3, 4 are known constants, gi, i=1,2,3,4 are known continuous functions.

Solution of  Non-classical Diffusion Problem :
Consider a uniform mesh  with grid points (xi, tn) to discretize the grid region  = [a, b] × [0,] with xi = a + ih

i = 0, 1, 2, . . . , N and tn= nk, n = 0, 1, 2, 3, . . . M, Mk = T.
Here the quantities h and k are mesh space size and time step size, respectively. The time derivative can be
approximated by using the standard finite difference formula:
݊ݑ߲

ݐ߲
= ݊ݑ−1+݊ݑ

݇
                       (4)

Using the approximation of (4), (1) becomes
݊ݑ−1+݊ݑ

݇
   =  ∝2 ݊ݑ2߲

2ݔ߲  + q(݅ݔ , (5)            ( 1+݊ݐ

Using ∅ -weighted technique, the space derivatives of (5) can be written as

݊ݑ−1+݊ݑ

݇
     = ∅(∝2 1+݊ݑ2߲

2ݔ߲ ) + (1-∅)(∝2 ݊ݑ2߲

2ݔ߲ ) + q(݅ݔ , (6)               ( 1+݊ݐ

where 0 ∅  1 and the subscripts n and n + 1 are successive time levels. It is noted that the system becomes

an explicit scheme when ∅  = 0, a fully implicit scheme when ∅  = 1, and a

Crank-Nicolson scheme when  ∅  = 1/2 . In this paper, we use the Crank-Nicolson approach. Hence, (6) becomes



݊ݑ−1+݊ݑ

݇
 = 1

2
(∝2 1+݊ݑ2߲

2ݔ߲ ) + 1
2
 (∝2 ݊ݑ2߲

2ݔ߲ ) + q(݅ݔ , (7)                ( 1+݊ݐ
On simplification:

k∝2 -1+݊ݑ2 k∝2+݊ݑ2 = 1+݊ݑ ݅ݔ)2kq+݊ݑ , (8)                     ( 1+݊ݐ

The space derivatives are approximated by using cubic trigonometric B-spline and are discussed in the next
section.

3.  Cubic Trigonometric B-Spline Technique :
In this section, we discuss the cubic trigonometric B-spline collocation method (CuTBSM) for the

numerical solution of the non-classical diffusion equation (1). Consider a mesh a  x  b which is equally
divided by knots xi into N subintervals

݅ݔ] 0ݔ = ܽ where 1 − ܰ , . . . ,2 ,1 ,0 = ݅ ,[1+݅ݔ, < 1ݔ < ⋯ < ܰݔ = ܾ .
Our approach for the non-classical diffusion equation using collocation method with cubic trigonometric
B-spline is to seek an approximate solution as

,ݔ)ܷ (ݐ =  ∑ 1−ܰ (ݔ)݅ܤܶ(ݐ)݅ܥ
݅=−3                     (9)

where  Ci (t) are to be determined for the approximated solutions U (x, t) to the exact solutions u(x, t), at the
point (xi tn). TBi (x) are twice continuously differentiable piecewise
cubic trigonometric B-spline basis functions over the mesh defined by

T1 = (ݔ)݅ܤ
ݓ

 

⎩
⎪⎪
⎨

⎪⎪
⎧ ݔ                                        (݅ݔ)3݌ ∈ ݅ݔ] , [1+݅ݔ

(2+݅ݔ)ݍ(݅ݔ)݌)(݅ݔ)݌ + (1+݅ݔ)݌(3+݅ݔ)ݍ
ݔ                     ,(1+݅ݔ)2݌(4+݅ݔ)ݍ+ ∈ [2+݅ݔ,1+݅ݔ]
(3+݅ݔ)ݍ(1+݅ݔ)݌൫(4+݅ݔ)ݍ + ൯(2+݅ݔ)݌(4+݅ݔ)ݍ +
ݔ                              ,(3+݅ݔ)2ݍ(݅ݔ)݌ ∈ 2+݅ݔ] [3+݅ݔ,
ݔ                                       ,(4+݅ݔ)3ݍ ∈ 3+݅ݔ] ⎭     [4+݅ݔ,

⎪⎪
⎬

⎪⎪
⎫

 
                           (10)

Table 1: Values TB(x) and its derivatives
x x i xi+1 xi+2 xi+3 xi+4

 TBi 0   a1 a2 a1 0

 TBi' 0 a3 0 a4  0

 TBi' ' 0 a5   a6 a5 0

Where (݅ݔ)݌ = sin	(
ݔ − ݅ݔ

2
) 

(݅ݔ)ݍ = sin	(
݅ݔ − ݔ

2
) 

ݓ = sin ቀℎ
2
ቁ sin(ℎ) sin	(3ℎ

2
)   (11)

and where h = (b  a)/n. The approximations Ui
n at the point (xi, tn)  over subinterval [xi, xi+1] can be
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defined as

 ܷ݅
݊ = ∑ ܤ݆ܶ݊݇ܥ 1−݅(ݔ)

݆=݅−3                                      (12)

In order to obtain the approximations to the solutions, the values of TBi(x) and its derivatives at nodal points
are required and these derivatives are tabulated in Table 1, where

ܽ1 =  
(ℎ2)2݊݅ݏ

sin(ℎ) sin	(3ℎ2 )
 

ܽ2 =
2

1 + 2cos	(ℎ) 

ܽ3 = −
3

4sin	(3ℎ2 )
 

ܽ4 =
3

4sin	(3ℎ2 )
 

ܽ5 =
3(1 + 3 cos(ℎ))

2݊݅ݏ16 ቀℎ2ቁ (2 cos ቀℎ2ቁ+ cos	(3ℎ2 )
 

ܽ6 =  −
(ℎ2)2ݏ݋3ܿ

2݊݅ݏ ቀℎ2ቁ (2 + 4 cos(ℎ))
 

Using approximate functions (10) and (12)  the values at the knots of  Ui
n(x) and their derivatives up to second

order are determined in terms of time parameters Cj
n as

ܷ݅
݊ = 3−݅ܥ1ܽ

݊ + 2−݅ܥ2ܽ
݊ + 1−݅ܥ1ܽ

݊  
݊݅(ݔܷ) 3−݅ܥ3ܽ = 

݊ + 1−݅ܥ4ܽ
݊  (14)

 ( ݔݔܷ )݅݊ = 3−݅ܥ5ܽ
݊ + 2−݅ܥ6ܽ

݊ + 1−݅ܥ5ܽ
݊     

Substituting (12) into (8) gives the following equation:

2∑ 1−݅ܥ
݆=݅−3 ݆

݊+1
ܤ݆ܶ (݅ݔ) − ݇ ∝2 ∑ 1−݅ܥ

݆=݅−3 ݆

݊_1
 (݅ݔ),,ܤ݆ܶ

=2∑ ܤ݆ܶ݊ܥ݆ (݅ݔ) + ݇ ∝2 ∑ ܤ݆ܶ݊ܥ݆ (݅ݔ),, + ݅ݔ)ݍ2݇ , 1−݅(1+݊ݐ
݆=݅−3

݅−1
݆=݅−3                                    (15)

The system thus obtained on simplifying (15) consists of  N + 1 linear equations in N + 3 unknowns
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1+݊ܥ = 3−ܥ)
݊+1 2−ܥ,

݊+1 1−ܥ,
1−ܰܥ , . . . ,1+݊

݊+1)  at the time level 1+݊ݐ = ݐ . Equation (9) is applied to the
boundary constraints (2) and (3) for two additional linear equations to obtain a unique solution of the resulting
system:

ξ1ܷ(0, (1+݊ݐ + ξ2ܷ0)ݔ, (1+݊ݐ = ∫ ,ݔ)ܷ(ݔ)2݃ ݔ݀(1+݊ݐ + ℎ1(1+݊ݐ)ܮ
0                      (16)

ξ3ܷ(ܮ, (1+݊ݐ + ξ4ܷܮ)ݔ, (1+݊ݐ =) 0ܮ∫
න݃3(ݔ)ܷ(ݔ, ݔ݀(1+݊ݐ + ℎ2(1+݊ݐ)  (17)

From (15), (16), and (17), the system can be written in the matrix vector form as follows:

1+݊ܥܯ = ݊ܥܰ + ܾ                                                                                                           (18)

Where

1+݊ܥ = 3−ܥ]
2−ܥ,1+݊

݊+1 1−ܥ,
݊+1 , … 1−ܰܥ,

݊+1]ܶ , 
݊ܥ = 3−ܥ]

݊ 2−ܥ,
݊ 1−ܥ,

݊ , … 1−ܰܥ,
݊ ]ܶ . 

(19)                                                                                          ܯ , . . . ,2 ,1 ,0 = ݊

and M and N are N + 3-dimensional matrix given by

∝1 (1+݊ݐ) = ∫ ,ݔ)ݑ(ݔ)2݃ ݔ݀(1+݊ݐ + ℎ1(1+݊ݐ)ܮ
0 , 

(1+݊ݐ)1ߚ = ∫ ,ݔ)ݑ(ݔ)3݃ ݔ݀(1+݊ݐ + ℎ2(1+݊ݐ)ܮ
0 .                                (20)

Thus, the system (18) becomes a matrix system of dimension (N + 3) × (N + 3) which is a tridiagonal system that
can be solved by the Thomas Algorithm16.

3.1. Initial State Vector  C 0.  After the initial vectors C 0 have been computed from the initial constraints, the
approximate solutions ܷ݅

݊+1 at a particular time level can be calculated repeatedly by solving the recurrence
relation (15) . The initial vectors C 0 can be obtained from the initial condition and boundary values of the
derivatives of the initial condition as follows :

( ܷ݅
ݔ(0 = ݃1

, ݅      ,(݅ݔ) = 0,                                                            (21)

ܷ݅
0 = ݅   ,(݅ݔ)1݃ = 0,1,2, … …ܰ                                             (22)

( ܷ݅
ݔ(0 = ݃1

, ݅      ,(݅ݔ) =N 

Thus (22) yields a (N + 3)×(N + 3) matrix system, of the form

A݊ܥ = ݀1                                                                       (23)
Where

݊ܥ = 3−ܥ]
݊ 2−ܥ,

݊ 1−ܥ,
݊ , … 1−ܰܥ…

݊ ]ܶ. 
d = [݃1

, ,(0ݔ)1݃,(0ݔ) … … 1݃,(ܰݔ)1݃…
, (24)                      ܶ[(ܰݔ)
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Table  2 comparison between TMOL[10] and present method (CuTBSM)
t K=0.01 Present method K= 0.005 Present method K= 0.001 Present method

TMOL[10] (CuTBSM) TMOL[10] (CuTBSM) TMOL[10] (CuTBSM)
0.1 4.5E-04 4.31E-04 4.0E-05 1.96E-04 1.5E-05 8.25E-06
0.3 1.4E-03 5.88E-04 1.4E-04 2.69E-04 2.5E-05 1.33E-05
0.5 2.5E-03 5.20E-04 2.5E-04 2.38E-04 2.4E-05 1.20E-05
0.7 4.0E-03 4.23E-04 4.0E-04 1.92E-04 2.7E-05 8.36E-06
0.9 5.5E-03 3.32E-04 5.5E-04 1.50E-04 6.0E-05 4.03E-06
1.0 6.0E-04 2.91E-04 6.0E-04 1.31E-04 6.8E-05 1.90E-06

4.  Results and Discussions

In this section, the cubic trigonometric B-spline collocation method is employed to obtain the numerical
solutions for one-dimensional non classical diffusion problem with nonlocal boundary constraints given in (1)–
(3). Two numerical examples are discussed in this section to exhibit the capability and efficiency of the proposed
trigonometric spline method. Numerical results are compared with existing  methods in the literature and with
the exact solution at the different nodal points xi for some time levels tn using some particular space step size
h and time step k.

5. Conclusion

In this paper, a new two-time level implicit scheme based on cubic trigonometric B-spline has been
used to solve thenonclassical diffusion problem with known initial and with nonlocal boundary constraints
instead of the usual boundary constraints. A usual finite difference discretization is used for time derivatives
and cubic trigonometric B-spline is applied for space derivatives. It is noted that the accuracy of solution may
reduce as time increases due to the time truncation errors of time derivative term24. The technique requires
smaller computational time than several other methods and the numerical results are found to be in good
agreement with known solutions and with existing schemes in this field.
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