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Abstract

This study is devoted to the stabilization of following quadratic and modified quadratic functional
equations in orthogonal space

h(3xty) =16h(x) +h(xt y),
and h(x + ay) + h(x—ay) = 2a2h(y) + 2h(x) .
Keywords: Orthogonal spaces, Quadratic and Modified functional equations.

1. Introduction

In 1975, Gudder et. al.'?first established the orthogonal stability of the Cauchy functional equations

h(r +s) = h(r) + h(s) withr | s. This result was further extended and studied to examine the orthogonal
stability for the mapping h by Ger and Sikorska'! on the steps of Ratz®. Further, the stability of the functional
equation

h(r +s)+h(r —s) = 2h(r) + 2h(s) ,with x Ly
On Hilbert orthogonal space was studied by famous mathematician Vajzovic®. The results of Vajzovic® were

generalized by Szabo?, Drljevic®, Fochi®. Furthermore, for more study on orthogonal spaces one may refer
tOl' 7, 10, 13, 14.
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This article deals with the orthogonal stabilization of the following functional equations defined as
h(3x+y) —16h(x)—h(x+y)=0
h(x + ay) + h(x—ay) -2ah(y)- 2h(x) =0
The paper is divided into four sections. Section 2 is introductory in nature. Sections 3 and 4 present the stability
of quadratic and modified quadratic functional equations.

2. Preliminaries :
This section contains the following orthogonality result studied by many researchers such as Ratz®,

James*, Birkhoff °, etc.
Definition 1. Let X be a linear space with dimension greater then equal to two and perpendicular (1)
is the operator defined on X which satisfies the following conditions:

(A1) rL0,0Lr,vreX (Totality)

(A2) r,se X —{0}=r L s, (Independence)

(A3) ifr 1 s,then ar L Bsfor a, B €] andforall r,s € X, (Homogeneity)

(A4) LetY isasubspace of X, r € Y and } bea positive scalar number, then for y, €Y and r L y, we

have I + Y, L Ar —Y,. (Thalesian property)

Then the combination (X, L) is known asorthogonality space. It is also known as symmetric if
rlsands | r,vr,se X.

Definition 2. Let (X,_L) be an orthogonal space and Z be a Banach space. Then, the relation

h: X — Z iscalled orthogonal quadratic map if it satisfies the system (1).
3. Orthogonal stability of quadratic equations :

In this section we prove that orthogonal stability of following quadratic functional equations

P(h) =h(@3r £s) —16h(r) —h(r = s) )
Theorem 1. Let us consider h be the quadratic function which satisfies
[P, <ndr +[s[,) @

vr,s e X with x Ly andp<2. Then, the mapping R: X — Z satisfying

n
Ih) RO, <5555 1 ®
is uniqueorthogonality solution.

Proof. Putting s=01in (2), we get
|2h(3r) —16h(r) - 2h(r)|,, <n(r|; +[o[})

|2h(3r) —18h(r)[, <n(|r|;)
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h(3r) || o
h(r) - 7 |, = 32 Irllx @
Changing r = 3r and then dividing throughout by 3% in inequality (4) and also summing the obtained result with
(4), we get
h(32 r
h(r) - < 1+— Il ®)
, 2 3
Proceeding in this way n-times, we get the following inequality
- 2E0 < LSy ®
2 2k
, 23 3

Now, to prove that the sequence < h(3" r)/32” > is a Cauchy sequence. Changing r with 3™ r and then

dividing throughout by 32™ in (6) we getforall n,m > 0.

h(3" h(3™™ n-1 3p(k+m)
H (?szr) - ;2n+2mr)H = Z 32k+2m ” ”x !
Y
1 . h(3™™ n-1 3Pk
R R ALk o
5 3. =

As m— oo forall r € X and p<2the sequence < h(3" r)/32” > isconvergestoapointin Z. Further, as

the Banach space Z is a complete, thus < h(3" r)/32” > is a Cauchy sequence. Thus, we can say

R(r)=1lim{h(3"r)/3""}, vreX. (8)
Putting 3"r and 3"s for rands in (2) respectively and then dividing by the number 32", we have
P(h) n 0P
32n 32n ( 3 ‘ 3 S ‘X) (9)

Letting N — oo, we obtain
IR(3r +5)-16R(r) - R(r +s)|, <0

R@Br+s)=16R(r)+R(rxs), vr,se X.
Hence R is orthogonally quadratic relation.

Taking N — oo in (6) we get

[R(r) =h(s)], 2(32—3,)” b vrex.
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For uniqueness of R: X — Z , let us consider the relation R': X — Z which satisfies (2), then we get

RN =R, < %{\\h@“ N-R@), +[REN-hE")|}

n
: (32 —3p)3“(27p) ||r||§’( —>0a n—wo

Thus, R'= R, that meansR is unique.

Theorem 2. Let h be the quadratic function which satisfies the inequality (2) for all r,s € X with
r L sand p>2.Then, themapping R: X — Z satisfying

n
[h(r) = R(s)], smllrlli (10)
is a unique quadratic orthogonal mapping.

Proof. Putting r/3 at the place of r and then multiplying by 32 in inequality (4), we get

r n ||
Fh(=)-h(r)| <=.|=
(3) ()Z 213l
r
Fh(=)-h(r)| <—]|r
@-h0) <55 Il (11)
r L O forall r € X .Proceeding in this way n-times we get the following inequality
34h( —)—h(r) 13 Irlls
52, | ik 1
r 77 n-1 32k
3"h(=)—h(r)| <

2k
n 3
2 3p z 3kp || ||
Now, to prove the sequence < h(3" r)/32” > is convergent. Replacing r with r /3™ and then multiplying

by 32™ in the inequality (13), we get

32n+2m h(3n+m ) 32m h( )

3m(p 2) Zsp(k ) ” ” (14)
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Which tends to 0 as m — oo for all in the right hand side of (14). Therefore, we prove that the sequence
<3?"h(r/3") > converges in the Banach space Y, hence the < 3°"h(r/3") > is a Cauchy sequence.

Thus, we get the orthogonal quadratic system R: X — Z such that
lim{3""h(r/3")} = R() forall r e X . (15)
Taking n — oo in (14) and using (15), we get the required result.

4. Orthogonal stability for generalized quadratic equation :

This section deals with the orthogonal stability of the following modified quadratic equation
h(x + ay) + h(x—ay) -2ah(y)- 2h(x) =0 (16)

Theorem 3. Let us consider X be a normed linear space, Y be a Banach space and ¢: X xX— [0, ) be
a mapping such that

@'x ay)

lim = 17
n—o0 a2n (17)

for all x, yeX. If the function h: X — Y with h(0) = 0, satisfies
[Ih(x + ay) + h(x-ay) - a?h(y) — 2h(x)l| <{(x, y) (18)

for all x, y € X. Then, the map R : X — Y is a unique quadratic function satisfying the relation

IIR(Y)-h(Y)II< 2 C(O a'y) (19)

The quadratic map R is defined as

n
Ry)= lim h(@y) . (20)
n—oo a2n
Proof: Letting x =0 in the relation (18), we obtain

Il 22°h(y)- 2h(ay) | <0, y) (21)
So that

h(a 1
‘ h(y) - ( e @

a

Now, puttingy = ay in (22) and d|V|d|ng throughout with a? and then adding the final equation with (22), we
have

1

h(a y) <2—C(O y)+—C(O ay) 23)

h(y)-

< é{%c(o,ay) +L0. y)}

a
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Proceeding in this way n-times for a positive integer n, we get

h@y) |, 1 &1
h(y)- 42N 2 2 &2 c.a'y) (24)
i=0a

Z 2, 50, a'y)

2a2

Now, we will prove the convergence of the sequence « h(an y)/aZn >, changing y with aty and then

dividing relation (24) by a?, we obtain for n, k>0,

h@y) h@"a*y)| [h@"y) h@"*y)

a2k a2n+2k a2k a2(n+k) )
Ky h@"*y)
< aﬂ h(a y) on

- 2a2 a2k = a2i
< - 25
w ;) 2K &)

As k—oo, the sequence < h(an y)/aZn > is a Cauchy sequence. Further, as Y is a Banach space, the

sequence < h(an y)/ a2n > approaches to a point R(y) € Y and thus R can be defined as

ha"y)

Ry)= lim
a2n

n—o0

Now;, we replace x and y with a, a"y in (16) and then dividing throughout with a2", to show that R is a solution
of (16)

h(a”(x+ay))_2h(a”x)+2a2h(a”y)+h(a”(x—ay)) g(a x, ay)

a2n a2n a2n 2n

As n—oo, then R satisfies (16) .

Now;, Let us consider R’ : X—Y be the second quadratic mapping which is the solution of (16) and (19).
Thus, we get
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1
IRM)-RMI= — - IR'@Y)-R@Y)I
a

1
< — - (IR'@y) -h@)li+IR@Y) -h@y)i)
a

|+n )

&00,a"y)
Z 2(|+n) (26)

As n—o, we get R(y) = R'(y) for all yeX. This completes the result.

Corollary 1. Let us consider X and Y are normed linear and Banach spaces, respectively. Let h: X—Y
with the condition h(0) = 0 satisfies

[Ih(x + ay) + h(x-ay) - 2a2h(y)- 2h(x)|| <&, &> 0be areal number
Then, 3 a unique quadratic mapping R: X—Y defined by

h(@"y)

2n = R(y)

lim
n—oo
Satisfying the inequality (20) and the relation

RO h)l < ————forallyex.
2(a” -1

Moreover, for each yeX the function m—h(my) from R to Y is continuous function, then we get a?R(y)= R(ay).

Corollary 2. Let us consider X and Y are normed linear and Banach spaces, respectively. Let h: X—Y
with the condition h(0) = 0 satisfies
[In(x+ay) + h(x-ay) -2a’h(y)- 2h(x)|| <e([Ix|[° + [lylF), where &0, 0 <p< 2.
Then, 3 a unique quadratic mapping R: X—Y satisfying the inequality (16) and the relation

€
IR(Y)-h(Y)ll < S RN lIyllP
—a p )
Where the function R is defined as
. h@"y)
=R
a

Moreover, for each yeX the function m—h(my) from R to Y is continuous function, then we get a?R(y)=R(ay).

Theorem 2.3.4. Let us consider X and Y are normed and Banach spaces, respectively and ¢ : XxY— [0,
o0) isa mapping such that

. X 'y
R IR @
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If the function h : X — Y with h(0) = 0, satisfies
[Ih(x + ay) + h(x—ay)-2ah(y) — 2h(x) || <X, y) (28)

Then, themap R : X — Y isa unique quadratic function satisfying the relation

1S o
IR@)- I < E.ZOaZI C(O, aiyﬂJ (29)
i=

where the quadratic map R is defined as

f a2 y
n||_r)nooa nh(a_njzR(y), forally eX. (30)

Proof: Putting y = y /a in (16) and multiplying throughout by a2, then, we have
2. (Y 1 y
a h( j—h(y) SEC(O, Ej (31)

a
Again changing y = y/a and then multiplying throughout by a%in (31).
a4 L)y |« 22 [0, 2 ) e Lef 0,2
2 ) "a2) 2°a

a
Ih(y) =R Il S%Zam C[O, ! J (3
i=0

a|+1

Thus, we obtain

For the convergence of {azn h( y j} , putting y = Lk and then multiplying throughout by a? in (32), we
a

a"

ak an+k

Then, from (32) the sequence {azn h( y j} , is a Cauchy sequence. But Y is a Banach space thus the

get

1 2(i+k) [ y J
<=Ya ¢l 0,—>—
2i=0 a|+k

n

a

sequence {azn h( y j} convergesin Y. So, let us define a mapping h: X—>Y by

a"
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lim a2" h(inj =RY)

n—o0 a

Then, using Theorem 3, the map R: X—Y is quadratic. Further, the remaining part is similar to the Theorem 3.
Corollary 3. Leth: X—Y be a mapping andh(0) = 0 which satisfies the inequality
[Ih(x + ay) + h(x-ay) -2a°h(y) — 2h(x) [|l<e

for all x, y €X, then, 3a mapping R : X —Y which satisfies the relation

IRO)-hl< ——

2(1-a%)
where the mapping R is defined as

i 2n y
lim a<"' h| = |-
n—oo [anj R(y), forally eX.

Corollary 4. Let h: X—Y be a mapping and h(0) = 0 which satisfies the inequality

[In(x + ay) + h(x-ay) - 2ah(y) — 2h(x)|| <e(lIx]F + [lyIF")

for some p> 2, then, 3 a mapping R : X =Y which satisfies the relation

1 €
R(y)—h <S————\vilP
I RCY) =h(y) |l 2(aP _a2) IV

where the mapping R is defined as
l y
R(y) = 1M a*h o ) cforally By
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