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Abstract

An attempt has been made to put forth certain properties of Lucas and Fibonacci vectors and
establish a relationship between the vectors using a special matrix. Cross products between Fibonacci and
Lucas vectors have been investigated.

Also, it was observed that, there exists a homeomorphism between the Fibonacci plane and any
plane parallel toit.
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1 Introduction

1.1 Definition
A vectorisa quantity having both magnitude and direction. Itis denoted by a directed line segment.
The length of the segment denotes the magnitude of the vector and the direction is shown by the unit vectors

acting along the x,y and z axes, namely { , ] and k.

1.2 Fibonacci and Lucas \ectors :

Here, we shall discuss some special vectors in space which are in the form 3 =xj +y ]+z k , where x,
y and z are the direction ratios and are denoted by consecutive Fibonacci or Lucas numbers.
Consider three consecutive Fibonacci numbers Fn, Fn+1, Fn+2 or three Lucas numbers Ly,

Ln+1, Ln+2 denoted by x, yand z respectively.
Since a Fibonacci number is obtained by adding the two previous Fibonacci numbers or a
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Lucas number is obtained by adding two previous Lucas numbers, we have
Freo = Fn+ Fper OF Lps2 = Lo+ Lpsa )
hence we get

Z=X+Yy )
= Xx+y —z = 0 represents a plane through the origin containing all Fibonacci position vectors (F,
Fn+1, Fne2) Or (Fne1, Fn, Foso) orall Lucas vectors (Ln, Ln+1, Ln+2) OF (Lne1, Ln,  Lns2)

2 Scalar Triple Product :

The fact that the points (Fn, Fn+1, Fn+2) , (Ln, Ln+t, Ln+2) , (Fn+1, Fn, Fns2)and (Ln+g,
Ln, Ln+2) lie in the plane is reiterated by proving a scalar triple product or box product to be zero, as
shown below.

Let the three vectors 3 , p , ¢ be denoted by

(Fn + K, Fnsk+1, Fn+k+2)
B

/

Ryt

AN
Do ¢

A b (Fn+p, Fn+p+1, Fn+p +2)
(Fn, Fn+1, Fn+2)

d = (Fowk —Fn)i + (Fneke1) — Fne) I + (Fn+k+2 — Fn+2) lz
6 = (Fn+p —Fn+k) |A + (Fn+p+1 - Fn+k+1) I + (Fn+p+2 - Fn+k+2) Iz
c= (Fn+p - Fn) |A + (Fn+p+1 - Fn+1) I + (Fn+p+2 - Fn+2) Iz

-F, F F F F

~ I:n+k n+k+1" "n+l n+k+2  "n+2
[a bc]= I:ner_FnJrk I:nerJrl_FnJrkJrl I:n+p+2_|:n+k+2
I:ner_Fn I:nerJrl_FnJrl I:n+p+2_|:n+2
I:nJrkJrl_FnJrl I:n+k+2_|:n+2
=10 Fn+p+l_Fn+k+l I:nerJrZ_FnJrkJrZ C1>C+C2-Cs
I:nerJrl_FnJrl I:nerJrZ_FnJrZ
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= 4, p, ¢ arecoplanar.
We know that in a 2D plane, a Fibonacci vector is denoted by [Fn+1  Fn]and a Lucas vector by

1 2
[Ln+1 Ln]. Now, using an R matrix, that is {2 J we can transform a Lucas vector into a Fibonacci vector.

1 2
[Ln+1 Ln]- |:2 _1:| = [Ln+1+ 2L, 2Ln+1—Ln]

[5Fn+1 5Fn]
5[Fnv1 Fnl

Theorem 1:
In a 3D vector space a Fibonacci vector [Fns1  Fn Fnsz] is transformed into a Lucas vector [Ln+1

1 21
Ln+2  Ln+a] when multiplied by the matrix |2 0 0
0 13
Proof
1 21
[Fn+1 Fn Fn+2] 2 00]= [Fn+1+2Fn 2Fn+1 + Fra2 Fn+1"’3Fn+2]
0 13
= [Ln+1 Ln+2 Ln+3]
Theorem 2:

A Fibonacci vector
[Fn Fns1 Fneg] is transformed into a Lucas vector [Ln+1  Lns2  Lnss] when multiplied by the matrix

2 00
1 21
0 13
Proof :

[Fn Fn+1 Fn+2]- [2Fn + Fn+1 2Fn+1 + Fn+2 Fn+1 + 3Fn+2]

o P N

= N o

w - o
|

[Lh+1  Ln+2  Lnss]
also,
[LI=3.6x|F| €)

= 2 2, E2 = 2 2 2
where|F|—\/Fn+1+Fn +Fe, , and|L| = \/Ln+1+Ln+2+Ln+3
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2 00 5 0 0
IfA= |1 2 1| then A= %-—3 6 —2
0 13 1 -2 4
FA = L
=LAt = F
5 0 0
[Ln+1 Ln+2 Ln+3]- % _3 6 _2 = % [5Ln+1_3Ln+2+ Ln+3 6Ln+2_2Ln+3 _2Ln+2+ 4Ln+3]
1 -2 4

[Fn Fn+1 Fn+2]

3 Homeomorphism :
The direction ratios of the normal tothe planex+y—-z=0are 1, 1, -1.

The equation to the normal through any arbitrary point (Fn, Fns1, Fne2) i

X=Fn _ Y-Fna _ 2-Fnio _
1 1 -4 T k
X=Fn+k, y=Fpn1t+tk, z=Fn2—K @)

Now, let there be a plane parallel to the Fibonacci plane x + y —z=0asx +y —z = |
The normal line intersects the planex +y —z=pat (Fa +k, Fnr1it+k, Fre2—kK)

Hencex+y-z=q

= (Fn+ k) + (Fas1 + k) = (Fas2 —k) M

=3k =

u

=k = —

3
Any point (Fn, Fns1, Fnez) O x+y-z = 0 have an image (Fn+ §, Fari+ §, Faez— %) onthe plane
X+ty-z=H ©)

Similarly, anypoint (Ln, Ln+1, La+z)Onx+y-z=0haveanimage (Ln+ %, Lo+ 5, Ln2—%) N

the planex+y—-z=p (6)
Hence, the plane x + y —z = pLis homeomorphic to the Fibonacci planex +y —z=0

4. Vector Product :
Consider the vectors

IEl = I:niA'|‘ I:nJrlj + Fn+2i2, 'EZ = Fn+1f+ Fnj"‘ I:n+2i2

|:1 = I-niA + |—n+1j + Ln+2i2, |:2 = I-nJrliA +Ln ] + I-n+2i2
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Theorem 3
i i K
IE.1 X I_-.1 =|Fn Fnt Fns2
I-n I-n+1 I-n+2

= [Fnsibnez —LnstFne2] | + [Fosoln —Lns2Fn] ] + [FnLns1 —LaFned] K
= [Fnsbln —Lns1Fn] i + [Frsaln — LosaFn] j+ [Faln+t —LaFnet] K
= [Fn+1Ln - Ln+1Fn][ |A + I - Iz ]

— {an+1_Bn+1} n n n+l, pn+l {an_Bn} o e
= [——7— A"+ " — =1l + j— k]
{a—B} Ga-pr
= (D)"2[f+ | -k]
Theorem 4 :
i i K
FaoxLa=|Fau  Fn Fosz
I-n+1 I-n I-n+2

[Folns2 —LnFns2] | + [Frsolns1 —Lns2oFne1] ] + [Fra1ln —LnatFn] K

[FoLns1 —LoFnaad[§ + I -k

n_@gn n+l _pn+l A A
- [{a p"} {an+1+Bn+2}_{an+Bn}{a p }][iA"' j -kl

{a-p} {o.—B}
= (D™2[] + ] -]

Theorem 5:

i i k
Ii.1 X I_-.2 =|Fn Fra Fni2
I-n+1 I-n I-n+2

[Freilnsz — LaFns2] | + [Frszlnes —Lns2Fn] ] + [FnLn —LnsaFnea] K

[Frelnes— LaFnl[f + § K]

Fonuali + j— k]
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Theorem 6 :

i i k
FoxlL=|Fna  Fn Fns2
I-n I-n+1 I-n+2

[Falns2 — Lns1Fns2] | + [Frszln — Lns2Fns1] j+ [Fretlne1 — LoFn] k
[Faln—LnsaFredd[§ + § —K]

(-DFznalf + K]

Conclusions

In this work, an investigation was done on Fibonacci and Lucas vectors. Two transformation matrices
were created to transform Fibonacci vectors to Lucas vectors. A homeomorphism was established between
planes parallel to the Fibonacci plane. Vector products between Fi- bonacci and Lucas vectors were investigated
and four results were obtained in the process.
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