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Abstract

A mixed quadrature rule of precision nine for approximate evaluation of real definite integrals has been
constructed by blending Clenshaw-Curtis five point rule modified by Richardson Extrapolation and Gauss-
Legendre four point rule.  An error analysis for this mixed rule is provided. The efficiency of this rule is
highlighted through numerical evaluation of some definite integrals at the end.

 Key words : Clenshaw-Curtis quadrature rule, Gauss-Legendre 4-point rule, Richardson Extrapolation,
mixed quadratue rule, Adaptive quadrature,  ܵ  .(݂)5ܥܥܴ,(݂)5ܥܥ,(݂)4ܮܩ,(݂)7ܯ

Subject classification: 65D32

1. Introduction

A mixed quadrature rule higher precision is formed by a suitable linear combination of  two or more
rules of lower precision. The first paper in which a mixed rule has been designed is due to R.N. Das and G.
Pradhan1. After this paper many authors have worked in this area. S.R. Jena and R. B. Dash2 formed a mixed rule
blending Gauss-Legendre four point transformed rule and modified Birkhoff-Young rule using Richardson
Extrapolation.

Recently, A.K.Tripathy et al.5 used Lobatto rule and Gauss-Legendre three point rules to form a mixed
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rule for approximation of real definite integrals. R.B. Dash and D. Das4 applied a mixed quadrature  formed out
of Clenshaw-curtis and Gauss-Legendre quadratures for evaluation of real definite integrals in adaptive
environment. S. Jena and D. Nayak6 used mixed quadrature rule Real for numerical solution of  Fredholm integral
equations. S. Jena et al.7 applied mixed quadrature for settling some electromagnetic field problems.
            In this paper, we modified the Clenshaw –curtis 5-point rule 5ܥܥ(݂) of precision -5 using Richardson
Extrapolation to form a rule of precision -7. Then we mixed this rule with Gauss-Legendre-4-point rule to form a
new mixed quadrature rule of precision-9. Then we theoretically proved and numerically verified that this mixed
rule is more efficient than its constituent rules.

I.  The Clenshaw-Curtis 5-point Quadrature Rule :
From the literature8,9,4 we know that in Clenshaw-Curtis method the integrand function ݂(ݐ) over any

interval [ܽ − ℎ, ܽ + ℎ] ݅ݏ approximated  using Chebyshev polynomials ܶ(ݔ)ݎ  of degree ݎ. 
That means
(ݐ)݂ = (ݔ)ܨ = ∑ ݊ݎܽ   ′

0=ݎ 1−)        (ݔ)ݎܶ ≤ ݔ ≤ 1)      (1.1)

                  =
1
2
ܽ0 (ݔ)0ܶ + ܽ1 (ݔ)1ܶ + ܽ2 (ݔ)2ܶ + ⋯ܽ݊ ܶ݊ (1.2)                                                   (ݔ)

Using this we obtain

ܫ݊  = ℎ∑ ܽ)݂݅ݓ + ℎ݅ݔ) ݊  "
0=ݎ

(1.3)                                               
                                                                         (1.3)

where here ݅ݓ = − 4
݊
∑ (݅ݔ)ݎܶ

1
1−2ݎ

݊  "
0=ݎ               i=0,1,2…n

(1.3) is known as Clenshaw-Curtis (n + 1) quadrature rule.
For n=4, we can obtain the Clenshaw-Curtis 5-point rule (5ܥܥ(݂)) as follows

4ܫ = (݂)5ܥܥ =
ℎ

15 ൤݂
(ܽ + ℎ) + 8݂ ൬ܽ +

ℎ
√2
൰ + 12݂(ܽ) + 8݂ ൬ܽ −

ℎ
√2
൰ + ݂(ܽ − ℎ)൨                     (1.4)

Consider a real valued function ݂ ܽ] and (ݔ) − ℎ,ܽ + ℎ] ⊆  (݂)݉݋݀

Let ܫ(݂) = ∫ ℎ+ܽݔ݀(ݔ)݂
ܽ−ℎ                                                                                           (1.5)

Using Clenshaw-Curtis 5-point rule (5ܥܥ(݂)) for evaluation of the integral (1.5),
we have

(݂)ܫ ≈ ℎ =(݂)5ܥܥ
15
ቂ݂(ܽ + ℎ) + 8݂ ቀܽ + ℎ

√2
ቁ + 12݂(ܽ) + 8݂ ቀܽ − ℎ

√2
ቁ+ ݂(ܽ − ℎ)ቃ           (1.6)

Applying  Taylor’s  Theorem, after simplification we obtain,

2ℎ= (݂)5ܥܥ ቂ݂(ܽ) + ℎ2

3!
݂݅݅(ܽ) + ℎ4

5!
(ܽ)ݒ݂݅ + 2

15
ℎ6

6!
(ܽ)݅ݒ݂ + 1

10
ℎ8

8!
݅݅݅ݒ݂ (ܽ) + 1

12
ℎ10

10!
ݔ݂ (ܽ) +

3
40

ℎ12

12!
݅݅ݔ݂ (ܽ) + ⋯ቃ

(݂)5ܥܥ 2ℎ ቂ݂(ܽ) +
3

40
ℎ12

12!
݅݅ݔ݂ (ܽ) + ⋯ቃ  (1.7)

The exact value of the integral

 

(݂)ܫ = 2ℎ ቂ݂(ܽ) + ℎ2

3!
݂݅݅(ܽ) + ℎ4

5!
(ܽ)ݒ݂݅ + ℎ6

7!
(ܽ)݅ݒ݂ + ℎ8

9!
݅݅݅ݒ݂ (ܽ) + ℎ10

11!
(ܽ)ݔ݂ + ℎ12

13!
݅݅ݔ݂ (ܽ) +

⋯ቃ    (1.8)

Error of the  ࡯࡯૞(ࢌ)) rule
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Let us denote the truncation error due to Clenshaw-Curtis 5-point rule for approximating the integral
(1.5) by 5ܥܥܧ(݂) 

Thus (݂)ܫ = (݂)5ܥܥ + (݂)5ܥܥܧ
      ⟹ (݂)5ܥܥܧ = −(݂)ܫ (1.9)                                                                                           (݂)5ܥܥ
Using the (1.7) and (1.8) on (1.9), after simplification we obtain

(݂)5ܥܥܧ = 2
15

ℎ7

7!
(ܽ)݅ݒ݂ + 1

5
ℎ8

9!
݅݅݅ݒ݂ (ܽ) + 1

6
ℎ11

11!
(ܽ)ݔ݂ + 1

20
ℎ13

13!
݅݅ݔ݂ (ܽ) + ⋯                     (1.10)

From the error expression it is clear that the degree of precision of the Clenshaw-Curtis 5-point rule is five.

2. Modified Clenshaw-Curtis 5 point rule due to Richardson Extrapolation  ࡯࡯ࡾ૞(ࢌ)  :

We have

ℎ =(݂)5ܥܥ
15
ቂ݂(ܽ + ℎ) + 8݂ ቀܽ + ℎ

√2
ቁ + 12݂(ܽ) + 8݂ ቀܽ − ℎ

√2
ቁ + ݂(ܽ − ℎ)ቃ 

Changing the step length as in2 and 3 we have

5ℎ2ܥܥ               
(݂) =

2ℎ
15 ൣ݂

(ܽ + 2ℎ) + 8݂൫ܽ + √2ℎ൯ + 12݂(ܽ) + 8݂൫ܽ − √2ℎ൯ + ݂(ܽ − 2ℎ)൧           (2.1)
Applying  Taylor’s  Theorem

ܥܥ
5ℎ2

(݂) = 4ℎ ቈ݂(ܽ) +
(2ℎ)2

3! ݂݅݅(ܽ) +
(2ℎ)4

5! (ܽ)ݒ݂݅ +
128
15

ℎ6

6! ݂
(ܽ)݅ݒ +

384
15

ℎ8

8! ݂
݅݅݅ݒ (ܽ)

+
1280

15
ℎ10

10!݂
(ܽ)ݔ +

4608
15

ℎ12

12! ݂
݅݅ݔ (ܽ) + ⋯቉ (2.2)

Error associated due to change of the step length ܥܥܧ
5ℎ2

(݂)  is given by

ܥܥܧ
5ℎ2

(݂) = (݂)ܫ − ܥܥ
5ℎ2

(݂) 

Using (1.8) and (2.2)

5ℎ2ܥܥܧ
(݂) = 256

15
ℎ7

7!
(ܽ)݅ݒ݂ + 1536

15
ℎ8

9!
݅݅݅ݒ݂ (ܽ) + 5120

15
ℎ11

11!
ݔ݂ (ܽ) + 6144

15
ℎ13

13!
݅݅ݔ݂ (ܽ) +⋯       (2.3)

Now          ܫ(݂) = (݂)5ܥܥ + (݂)5ܥܥܧ (2.4)

and              ܫ(݂) = 5ℎ2ܥܥ
(݂) + 5ℎ2ܥܥܧ

(݂)  (2.5)

Subtracting (2.5) from 128 times of (2.4), we get

     (128 − (݂)ܫ(1 = ൤1285ܥܥ(݂) − ܥܥ
5ℎ2

(݂)൨+ ൤1285ܥܥܧ(݂) − ܥܥܧ
5ℎ2

(݂)൨ 

⟹ (݂)ܫ =
1

127
൤1285ܥܥ(݂) ܥܥ−

5ℎ2
(݂)൨+

1
127

൤1285ܥܥܧ(݂)− ܥܥܧ
5ℎ2

(݂)൨

    = (݂)5ܥܥܴ +  (݂)5ܥܥܴܧ
       Where

(݂)5ܥܥܴ  = 1
127

൤1285ܥܥ(݂)− 5ℎ2ܥܥ
(݂)൨    (2.6)



        and          5ܥܥܴܧ(݂) =
1

127 ൤1285ܥܥܧ(݂) − ܥܥܧ
5ℎ2

(݂)൨

Now using (1.10) and (2.3) we have

(݂)5ܥܥܴܧ =
1

127
൥128 ቈ

2
15

ℎ7

7!
(ܽ)݅ݒ݂ +

1
5
ℎ8

9!
(ܽ)݅݅݅ݒ݂ +

1
6
ℎ11

11!
(ܽ)ݔ݂ +

1
20

ℎ13

13!
݅݅ݔ݂ (ܽ) + ⋯቉

− ቈ
256
15

ℎ7

7!
(ܽ)݅ݒ݂ +

1536
15

ℎ8

9!
݅݅݅ݒ݂ (ܽ) +

5120
15

ℎ11

11!
(ܽ)ݔ݂ +

6144
15

ℎ13

13!
݅݅ݔ݂ (ܽ)

+ ⋯቉൩ 

              =−  384
127×5

ℎ8

9!
݅݅݅ݒ݂ (ܽ)− 320

127
ℎ11

11!
(ܽ)ݔ݂ − 2016

127×5
ℎ13

13!
݅݅ݔ݂ (ܽ) + ⋯    (2.7)

(2.6) and (2.7) are respectively called Clenshaw-Curtis rule and Error in Modified Clenshaw-Curtis rule due to
Richardson extrapolation.
From (2.7), we see that the degree of precision of the rule is 7.

3. Gauss-Legendre 4 point  rule :

The Gauss Legendre-4 point rule is given by

      
(݂)4ܮܩ                       = ℎ

36
ൣ൫18 + √30൯{݂(ܽ − (ℎߙ + ݂(ܽ + {(ℎߙ + (18 − √30){݂(ܽ − (ℎߚ +

݂(ܽ + ℎ)}൧ߚ
ܮܩ                      

݂(ܽ + ℎ)}൧  (3.1)ߚ

where  ߙ = ඨ3−2ට6
5

7
ߚ  ,  = ඨ3+2ට6

5

7
 and ݂  is infinitely differentiable in its domain.

We can write ൫18 + √30൯ = 1
2

(21 + and ൫18 (2ߚ35 − √30൯ = 1
2

(21 + Using this and applying Taylors .(2ߙ35
theorem, we have

           

(݂)4ܮܩ = 2ℎ ቈ݂(ܽ) +
ℎ2

3! ݂
݅݅(ܽ) +

ℎ4

5! ݂
(ܽ)ݒ݅ +

ℎ6

7! ݂
(ܽ)݅ݒ +

3 × 301
73 × 52

ℎ8

8! ݂
݅݅݅ݒ (ܽ)

+
3 × 1561
74 × 52

ℎ10

10! ݂
(ܽ)ݔ +

9 × 13503
75 × 53

ℎ12

12! ݂
݅݅ݔ (ܽ) + ⋯ ቉  (3.2)

Denoting the truncation error of the Gauss-Legendre 4 point rule by 4ܮܩܧ(݂),
Hence

(݂)ܫ      = (݂)4ܮܩ +  (݂)4ܮܩܧ

(݂)ܫ =(݂)4ܮܩܧ⇒ − (3.3)                                                                             (݂)4ܮܩ

Using (1.8) and (3.2) on (3.3) we obtain
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(݂)4ܮܩܧ =
128

72 × 52
ℎ9

9!
݅݅݅ݒ݂ (ܽ) +

128 × 19
73 × 52

ℎ11

11!
(ܽ)ݔ݂ +

128 × 1163
74 × 53

ℎ13

13!
݅݅ݔ݂ (ܽ) + ⋯         (3.4)

The error (3.4) shows   that the degree of precision of  4ܮܩ(݂)  is 7.

4. Construction of the new mixed quadrature rule of precision nine :

For the construction of proposed mixed quadrature rule we proceed as follows.
We have

(݂)ܫ = (݂)5ܥܥܴ + (4.1)                                                                                           (݂)5ܥܥܴܧ

(݂)ܫ   = (݂)4ܮܩ + (4.2)                                                          (݂)4ܮܩܧ
Now adding 127 times of (4.1) with 735 times of (4.2) , we obtain

(݂)ܫ862    = (݂)4ܮܩ735] + [(݂)5ܥܥ127ܴ + (݂)4ܮܩܧ735] +  [(݂)5ܥܥܴܧ127

(݂)ܫ⇒ = 1
862

(݂)4ܮܩ735] + +[(݂)5ܥܥ127ܴ 1
862

[73

⟹ (݂)ܫ = (݂)7ܯܵ +  (݂)7ܯܵܧ

Where        ܵ7ܯ(݂) = 1
862

(݂)4ܮܩ735] + Thus we have . [(݂)5ܥܥ127ܴ

(݂)7ܯܵ =
1

862 ൤7354ܮܩ(݂) + −(݂)5ܥܥ128 ܥܥ
5ℎ2

(݂)൨                [Using (2.6)]                        (4.3)

Using(1.4), (2.1) and  (3.1)   on (4.3), we obtain

(݂)7ܯܵ =
245ℎ

10344
 ൣ ൫18 + √30൯{݂(ܽ − (ℎߙ + ݂(ܽ + {(ℎߙ + (18 − √30){݂(ܽ − (ℎߚ +

) ݂(ܽ + + ℎ)}൧ߚ
64ℎ

6465 ൤݂
(ܽ + ℎ) + ݂(ܽ − ℎ) + 8 ൜݂ ൬ܽ +

ℎ
√2
൰ + ݂ ൬ܽ −

ℎ
√2
൰ൠ൨ + 

ℎ
6465

ൣ݂(ܽ + 2ℎ) + ݂(ܽ − 2ℎ) + 8൛݂൫ܽ + √2 ℎ൯ + ݂൫ܽ − √2 ℎ൯ൟ൧ + 252ℎ
2155

݂(ܽ)                                      (4.4)

.is the desired mixed quadrature rule  (݂)7ܯܵ

The degree of precision of the rule is 9 which is established by the Theorem-1. The truncation error generated
by ܵ7ܯ(݂)  is given by

(݂)7ܯܵܧ =
1

862
(݂)4ܮܩܧ735] + (4.5)                                       [(݂)5ܥܥܴܧ127

Theorem-1 :
If ݂(ݔ)  is sufficiently differentiable in the interval [ܽ − ℎ, ܽ + ℎ] , the degree of precision of the rule

(݂)7ܯܵܧ is 9 and  (݂)7ܯܵ = .(ℎ11)݋

Proof

From (4.5), we have
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(݂)7ܯܵܧ =
1

862  ] ) (݂)4ܮܩܧ735] ) + [(݂)5ܥܥܴܧ127

Now using (2.7) and (3.4) the truncation error becomes

(݂)7ܯܵܧ = − 37472
431×49×25

ℎ11

11!
(ܽ)ݔ݂ − 

1011504
431×49×25

ℎ13

13!
݅݅ݔ݂ (ܽ)                                (4.6)

This established that the degree of precision of  the rule ܵ7ܯ(݂)  is 9 and 7ܯܵܧ(݂) =  □            .(ℎ11)݋

Theorem-2  (Error Analysis) :

The error committed due to the mixed quadrature rule ܵ7ܯ(݂)  is less than its constituent rules
Proof:

From (1.10) and (4.6) |7ܯܵܧ(݂)|  |(݂)5ܥܥܧ| ≥
From (2.7) and (4.6) |5ܥܥܴܧ| ≥ |(݂)7ܯܵܧ(݂)| 
From (3.4) and (4.6)   |7ܯܵܧ(݂)| ≤ |E4ܮܩ(݂)|.             □ 

5. Numerical verification :

The effectiveness of the rule is shown in the Table-5.1 by applying it and its constituent rules on
different integrals.

                                                                   Table-5.1
Sl    Value obtained by quadrature rules           Error approximated
no Integrals Exact value (݂)5ܥܥ  |(݂)7ܯܵܧ| (݂)4ܮܩܧ| |(݂)5ܥܥܧ| (݂)7ܯܵ  (݂)4ܮܩ 

1  න
1

1 + ݔ݁
ݔ݀

1

0
0.37988549 0.3798854 0.3798854 0.379885493 4.41 1010 4 1012 3 1012

3041 926 93045 038

2 න
1

1 + 4ݔ ݔ݀
2

1
 0.20315470 0.2031545 0.2031548 0.203154798 1.597 107 1.442107 9.65108

18 421 460 3

3 න
ݔ݀ ݔ݊݅ݏ

(1 + 3(ݔݏ݋ܿ

2/ߨ

0
 0.375 0.3749998 0.3749999 0.374999967 1.096 107 3.64 108 3.24 108

904 636 6

4 න
ݔ

1 + 3ݔ ݔ݀
2

0
 0.72379763 0.7237975 0.7237977 0.723797683 5.18 108 8.14 108 5 108

39 821 153 9

5 න
ݔ݀

1 + ݔݏ݋ܿ

2/ߨ

0
        1 0.9999998 0.9999999 0.999999944 1.76 107 6.31 108 5.53 108

240 369 7

6. Conclusion

From the table it is evident that the new mixed quadrature rule  SM7(f)  when applied each of the five
integrals    gives better result than that of  its constituent rules CC5(f) and  GL4(f).  This efficient  rule can be
used for numerical integration of  infinitely differentiable integrands in adaptive environment to achieve desired
accuracy.
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