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Abstract

In this paper, we study some results of transversal hypersurfaces with (f, g̃, u, v, )structure of  a
nearly  Kenmotsu  manifold.   Some  more  results  on  totally  geodesic  or  totally  umbilical transversal
hypersurface with (f, g̃, u, v, )structure of a nearly Kenmotsu manifold have also been studied.
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1    Introduction

Transversal  hypersurfaces  of  an  almost  contact  manifold  was  studied  by  Yano,  Sang-Seup  Eum
and  U-Hang  Ki7  in  1972.  In  2003,  transversal  hypersurfaces  of  Kenmotsu  manifold  have  been studied  by
Prasad  and  Tripathi8.    Prasad  et.al.10  have  studied  on  quasi-conformally  semi- symmetric  Kenmotsu
manifold  in  2010.    In  1970,  Yano  and  Okumura1  have  defined  a  new structure  in  an  even  dimensional

manifolds  called  an  (f, U, V, u, v, λ)-structure.    There  always exists  a  (f, ෤݃ , u, v,, λ)”structure  and  gave  the
results  that  there  does  not  exist  an  invariant  hy- persurface  of  a  contact  manifold.    In  1967,  Okumura2

has  deduced  certain  hypersurfaces  of an  odd-dimensional  sphere.   Later  on  it  was  studied  by  Blair  and
Ludden3,  Blair  et.al.4,  Yano  and  Ki5,6  and  others.  If  a  manifold  with  (f, U, V, u, v, λ)-structure  has  a  positive

def- inite  Riemannian  metric  ෤݃ ,  under  certain  conditions,  then  we  call  such  a  manifold  has  a  metric
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(f, ෤݃ , u, v, λ)-structure  or  (f, ෤݃ , u, v,, λ)-structure.  Any  submanifold  of  codimension  2  immersed  in an almost

hermitian manifold and any hypersurface immersed in an almost contact metric manifold admit an (f, ෤݃ , u, v,, λ)-
structure.

The paper is organized as follows.  The Section 2 contains preliminaries.  In Section 3, we study some
properties  of  transversal  hypersurfaces  of  nearly  Kenmotsu  manifold.  Also,  we  obtain  a necessary  and

sufficient  condition  for  M,  transversal  hypersurface  with  (f, ෤݃ , u, v,, λ)-structure  of a nearly β-Kenmotsu
manifold, to be totally geodesic and totally umbilical.

2    Preliminaries :

Let M~  f  be  an  almost  contact  metric  manifold  endowed  with  almost  contact  metric  structure

(φ, ξ, η, ෤݃ )  that  is    is  (1, 1)  tensor  field,  ξ  is  a  vector  field,  η  is  1form  and ෤݃   is  a  Riemannian metric
such that

(2.1) (ߦ)ߟ =  1, (ߦ)߮ = 0, = ߮݋ߟ  0, ߮2 = ݕݐ݅ݐ݊݁݀݅− + ߟ  ⊗  ,ߦ

(2.2)     ෤݃(߮ܺ,ܻ߮ ) =  ෤݃(ܺ,ܻ) −  ,(ܻ)ߟ(ܺ)ߟ
(2.3) ෤݃(ܺ,ܻ߮ ) = − ෤݃(߮ܺ,ܻ ), (ܺ)ߟ = ෤݃(ܺ, ( ߦ
for any ܺ,ܻ ∈ ෩ܯܶ   . 

An almost contact metric manifold ܯ෩  with almost contact metric structure (߮, ,ߟ,ߦ ෤݃) is said to be
a nearly ߚ −Kenmotsu manifold if

(2.4) ෨ܺߘ) ߮)ܻ + ܺ(෨ܻ߮ߘ) = + ܺ߮(ܻ)ߟ)ߚ− (ܻ߮(ܺ)ߟ 
for all vector fields X, Y on ܯ෩ , where  is smooth functions on ܯ෩  and ߘ෨   is the operator of covariant

diûerentiation with respect to ෤݃ .
From (2.4), we have
(2.5) ෨ܺߘ = ߦ ܺ)ߚ  − (ߦ(ܺ)ߟ  .ܺ(߮ߦ෨ߘ)߮−

The Gauss and Weingarten formulae are given by

(2.6) ෨ܺߘ       ܻ = ߘܺ  ܻ +  ,෡ܰ (ܻ,ܺ)ߪ 
(2.7) ෨ܺߘ ෡ܰ = ܣ− ෡ܰܺ 

for any ܺ,ܻ ∈ ෨ߘ where ;;ܯܶ    and ߘ  are the Riemannian and induced Riemannian connections in ܯ෩  and  M
respectively and ෡ܰ  is the unit normal vector in the normal bundle ܶ⊥ܯ .
The second fundamental form  on M related to ܣ ෡ܰ   is given by
(2.8) (ܻ,ܺ)ߪ  =  ෤݃(ܣ ෡ܰܺ ,ܻ). 
Let M be a hypersurface of an almost contact metric manifold ܯ෩ , then we deûne the following

(2.9)  ߮ܺ = ݂ܺ + (ܺ)ݑ ෡ܰ, 

(2.10)                                                                                     ߮ ෡ܰ = −ܷ, 

(2.11) ߦ  = ܸ + ߣ  ෡ܰ; ߣ  = )ߟ ෡ܰ), 
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(2.12) (ܺ)ߟ  =  (ܺ)ݒ 

for  ܺ ∈  .ܯܶ
We get an induced (݂, ෤݃,ݑ, ,ݒ structure2,7 on the transversal hypersurface satisfying −(ߣ

(2.13) ݂2 = ܫ− + ݑ ⊗ ܷ + ݒ  ⊗ ܸ, 
(2.14) ݂ܷ = ,ܸߣ− ݂ܸ =  ,ܷߣ 
(2.15) = ݂݋ݑ ,ݒߣ  = ݂݋ݒ  ,ݑߣ−
(2.16) (ܷ)ݑ = 1 − ,2ߣ ( ܸ)ݑ = (ܷ)ݒ  = 0, ( ܸ)ݒ = 1 − 2ߣ ,
(2.17)            ෤݃(݂ܺ,݂ܻ) =  ෤݃(ܺ,ܻ) − (ܻ)ݑ(ܺ)ݑ −  ,(ܻ)ݒ(ܺ)ݒ
(2.18) ෤݃(ܺ,݂ܻ) = − ෤݃(݂ܺ,ܻ), ෤݃(ܺ,ܷ) = ,(ܺ)ݑ ෤݃(ܺ,ܸ ) =  ,(ܺ)ݒ
for any  ܺ,ܻ ∈ ;ܯܶ ߣ  = )ߟ  ෡ܰ). 
Therefore every transversal hypersurface immersed in an almost contact Riemannian manifold admits an

(݂, ෤݃, ,ݑ (ߣ,ݒ − structure.

3   Transversal hypersurfaces with (݂, ෤݃, ,ݑ (ߣ,ݒ − structure :

A hypersurface of an almost contact manifold does not in general possess an almost complex structure.

It is well known that a hypersurface (real codimension ) of an almost complex manifold admits an almost

contact structure. A transversal hypersurface M of an almost contact manifold ܯ෩  equipped with an almost

contact structure (߮, is a hypersurface such that there exists a structure vector field   never belong to  (ߟ,ߦ
tangent hyperplane of the hypersurface M   7.  In this case structure vector field can be taken as an affine normal
to the hypersurface. For X  TM, since X and  are linearly independent, then X defined as

(3.1) ߮ܺ = + ܺܨ   ,ߦ(ܺ)߳
where F  is (1,1)  tensor field and  is form on M.

Theorem 3.1 Let  M be a transversal hypersurfaces with (݂, ෤݃, ,ݑ (ߣ,ݒ − structure of a nearly

Kenmotsu manifold ܯ෩ , and if M equipped with contact metric structure, then

(3.2) ߘܺ ܸ = ܣߣ  ෡ܰܺ + − ܺ)ߚ   ,( ܸ(ܺ)ݒ
(3.3) ( ܸ,ܺ)ߪ        = (ܺ)ݒߣߚ− −  ߣܺ
For all  ܺ,ܻ ߳ ܶܯ.

Proof.  From (2.3) and (2.8), we have

(3.4) ෨ܺߘ ξ  = ߘܺ   ܸ  − ܣߣ ෡ܰ  + ( ܸ,ܺ)ߪ) +  ෡ܰ (ߣܺ 

Using (2.2) and (2.6), we have the following



ߘܺ ܸ  − ܣߣ ෡ܰܺ + ( ܸ,ܺ)ߪ) + (ߣܺ  ෡ܰ 
(3.5)                                   = − ܺߚ  ܸ(ܺ)ݒߚ − ෡ܰ (ܺ)ݒߣߚ  − (ܺ(߮ߦ෨ߘ))݂ −  .෡ܰ (ܺ(߮ߦ෨ߘ))ݑ
Since manifold M equipped with contact metric structure, the above equation reduces to

ߘܺ  ܸ  − ܣߣ ෡ܰܺ ܺ + ( ܸ,ܺ)ߪ) +  ෡ܰ (ߣܺ 

(3.6) = − ܺߚ  − ܸ(ܺ)ݒߚ  .෡ܰ (ܺ)ݒߣߚ
Equating tangential and normal parts, we have respectively (3.2) and (3.3).

Theorem 3.2  If  M is a transversal hypersurfaces with (݂, ෤݃, ,ݑ (ߣ,ݒ − structure of a nearly

Kenmotsu manifold ܯ෩  equipped with contact metric structure, then

(3.7) ߘܺ ܷ = + ݂ܺߣߚ  ܣ)݂ ෡ܰܺ) +  ܺ(෡݂ߘܰ)
for all ܺ,ܻ ∈ .ܯܶ 

Proof.  Consider

ߘܺ ) ߮)  ෡ܰ    = ෨ܺߘ  ߮ ෡ܰ − ෨ܺߘ ݁߮ ෡ܰ 

= ߘܺ − ܷ  − ෡ܰ (ܷ,ܺ)ߪ + ܣ)݂  ෡ܰܺ) + ܣ)ݑ  ෡ܰܺ) ෡ܰ 
(3.8) = ߘܺ − ܷ + ܣ)݂ ෡ܰܺ) 
using (2.4)-(2.9).
From (2.1), (2.6) and (2.8), we obtain

෨ܺߘ) ߮)ܻ + ෨ܻߘ)  ߮)ܺ 
(3.9) = + ݂ܺ(ܻ)ߟ}ߚ− {ܻ݂(ܺ)ߟ  − (ܺ)ݑ(ܻ)ߟߚ} +  .෡ܰ {(ܻ)ݑ(ܺ)ߟߚ 
Replacing  ܻ =  ෡ܰ    in (3.9), we have

෨ܺߘ) ߮) ෡ܰ  + ෨ߘ) ෡ܰ߮)ܺ = − ݂ܺߣߚ−   ෡ܰ ݂(ܺ)ݒߚ

(3.10) (ܺ)ݑߣߚ}−      + {(෡ܰ )ݑ(ܺ)ݒߚ  ෡ܰ. 
From (3.8) and (3.10), we get

ߘܺ ܷ  − ܣ)݂ ෡ܰܺ) − ෨ߘ) ෡ܰ߮)ܺ = + ݂ܺߣߚ  ݂(ܺ)ݒߚ  ෡ܰ 
(3.11) (ܺ)ݑߣߚ} +  + {(෡ܰ )ݑ(ܺ)ݒߚ  ෡ܰ. 
Now equating tangential part, we have (3.7).

Proposition 3.3 Let M be a transversal hypersurfaces with (݂, ෤݃, ,ݑ (ߣ,ݒ − structure of a nearly

Kenmotsu manifold ܯ෩ . Then we have

ߘܺ ) ݂)ܻ + ߘܻ )  ݂)ܺ = − ܷ(ܻ,ܺ)ߪ2 + ݂ܺ(ܻ)ݒ)ߚ  ( ܻ݂(ܺ)ݒ
(3.12) ܣ(ܻ)ݑ+  ෡ܰܺ − ܣ(ܺ)ݑ ෡ܻܰ. 
(3.13) ߘܺ ) + ܻ(ݑ ߘܻ ) = ܺ(ݑ  (ܺ)ݑ(ܻ)ݒߚ−  − (ܻ)ݑ(ܺ)ݒߚ − ,ܺ)ߪ ݂ܻ) − ,ܻ)ߪ ݂ܺ) 
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for all ܺ,ܻ ∈  .ܯܶ 

Proof. Consider

෨ܺߘ) ߮)ܻ = ෨ܺߘ)  ܻ߮) − ෨ܺߘ)߮ ܻ) 

   = ෨ܺߘ  (݂ܻ + (ܻ)ݑ ෡ܰ) − ߘܺ )߮ ܻ + (ܻ,ܺ)ߪ  ෡ܰ)

   = ߘܺ )  ݂)ܻ − ܣ(ܻ)ݑ ෡ܰܺ +   ܷ(ܻ,ܺ)ߪ 

(3.14) ߘܺ ))+          + ܻ(ݑ  .෡ܰ ((ܻ݂,ܺ)ߪ
Similarly

= ܺ(෨ܻ߮ߘ) ߘܻ )   ݂)ܺ − ܣ(ܺ)ݑ ෡ܻܰ + ܷ(ܻ,ܺ)ߪ
(3.15) ߘܻ ))+           + ܺ(ݑ  ,ܻ)ߪ  ݂ܺ)) ෡ܰ 
using (2.6)-(2.9). From (3.14) and (3.15), we have

෨ܺߘ) ߮)ܻ + = ܺ(෨ܻ߮ߘ) ߘܺ ))  + ܻ(ݑ + ܺ(ݑ ܻߘ ) ,ܺ)ߪ  ݂ܻ) +  ෡ܰ ((݂ܺ,ܻ)ߪ 

ߘܺ )+                                            (3.16) ݂)ܻ + ߘܻ )  ݂)ܺ + − ܷ(ܻ,ܺ)ߪ2 ܣ(ܻ)ݑ ෡ܰܺ − ܣ(ܺ)ݑ ෡ܻܰ. 
From (3.9) and (3.16), we have

ߘܺ ) ݂)ܻ + − ܺ(݂ ܻߘ ) ܣ(ܻ)ݑ ෡ܰܺ − ܣ(ܺ)ݑ ෡ܻܰ +   ܷ(ܻ,ܺ)ߪ2

ߘܺ )}+                                                          + ܻ(ݑ ߘܻ ) + ܺ(ݑ  (ܻ݂,ܺ)ߪ  + {(݂ܺ,ܻ)ߪ  ෡ܰ

                                                                   = + ݂ܺ(ܻ)ߟ}ߚ−   {ܻ݂(ܺ)ߟ

(ܺ)ݑ(ܻ)ߟߚ}−                                                                                    + {(ܻ)ݑ(ܺ)ߟߚ  ෡ܰ. 

Equating tangential and normal components of above, we get respectively (3.12) and (3.13).

Theorem 3.4  In order that a totally umbilical transversal hypersurfaces with

(݂, ෤݃,ݑ, ,ݒ (ߣ − structure  of a nearly Kenmotsu manifold ܯ෩  equipped with contact metric structure be
totally geodesic it is necessary and suûcient that
(ܺ)ݒߣߚ                                                               (3.17) + = ߣܺ   0. 

Proof.  From Theorem 3.1, we have

( ܸ,ܺ)ߪ                                                        (3.18)  = (ܺ)ݒߣߚ− −  .ߣܺ

If M  is totally umbilical, then  ܣ ෡ܰ  = is Kahlerian metric9 and we know the relation of  on M   ߞ where , ܫߞ 
related to  ܣ ෡ܰ   by

(ܻ,ܺ)ߪ                                  (3.19)  =  ෤݃(ܣ ෡ܰܺ,ܻ)  =  ෤݃(ܺߞ,ܻ)  = ߞ  ෤݃(ܺ,ܻ). 
Therefore  ߪ(ܺ,ܸ)  = ߞ  ෤݃(ܺ,ܸ )  = then (3.18) gives  ,(ܺ)ݒߞ 
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(3.20) (ܺ)ݒߣߚ  + + ߣܺ  (ܺ)ݒߞ  =  0. 
If M  is totally geodesic that is 0 = ߞ, then (3.20) implies

(3.21) + ݒߚ (ߣ݃݋݈)݀   =  0. 
The converse can easily be verified.

Theorem  3.5  Let M be a transversal hypersurfaces with (݂, ෤݃,ݑ, ,ݒ (ߣ − structure of a nearly
Kenmotsu manifold with parallel tensor field f of type (1, 1) equipped with contact structure.  Then M is
totally geodesic  if

(3.22) + ݒߣߚ2 (ߣ݃݋݈)݀   =  0. 

Proof.  Since f  is parallel, (3.12) reduces to

(3.23) = ܷ(ܻ,ܺ)ߪ2 + ݂ܺ(ܻ)ݒ)ߚ  ( ܻ݂(ܺ)ݒ − ܣ(ܻ)ݑ ෡ܰܺ − ܣ(ܺ)ݑ ෡ܻܰ. 
Applying u on (3.23) and using (2.12), we obtain

(3.24) 2(1− (ܻ,ܺ)ߪ(2ߣ  = (ܻ)ݒ(ܺ)ݒߣߚ2  − ܣ)ݑ(ܻ)ݑ ෡ܰܺ) − ܣ)ݑ(ܺ)ݑ ෡ܻܰ). 
In view of (3.24), we have

(3.25) ܣ)ݑ ෡ܰܺ)  = − ܷ)ߪ  ,ܷ) 
(2ߣ−1)3

 .(ܺ)ݑ

In the similar way, we have

ܣ)ݑ                                                       (3.26) ෡ܻܰ)  = −  (ܷ,ܷ)ߪ 
(2ߣ−1)3

 .(ܻ)ݑ

With the help of (3.24), (3.25) and (3.26), we have

(3.27) (ܻ,ܺ)ߪ  = ߣߚ  
(2ߣ−1)3

(ܻ)ݒ(ܺ)ݒ +  (ܷ,ܷ)ߪ 
2(2ߣ−1)3  ,(ܻ)ݑ(ܺ)ݑ

where   ߪ(ܷ,ܷ)  = ܣ)݃  ෡ܷܰ,ܷ)  = ܣ)ݑ  ෡ܷܰ).
Again from (3.3) and (3.27), we obtain
(ܺ)ݒߣߚ2                                                                (3.28) + = ߣܺ   0. 

Theorem 3.6  If M is a transversal hypersurfaces with (݂, ෤݃,ݑ, ,ݒ (ߣ − structure of a nearly
Kenmotsu manifold  with  a  parallel  vector  field  U,  then  M  is  totally  geodesic  if

+ ݂ܺߣߚ                                                            (3.29) = ܺ(෡݂ߘܰ )  0. 

Proof.  Since we have seen that

෨ܺߘ)                                                (3.30) ߮) ෡ܰ  = ߘܺ − ܷ + ܣ)݂ ෡ܰܺ), 
and

(3.31) ෨ܺߘ) ߮) ෡ܰ  + ෨ߘ) ෡ܰ߮)ܺ = − ݂ܺߣߚ−  ݂(ܺ)ݒߚ ෡ܰ − )ݑ(ܺ)ݒߚ + (ܺ)ݑߣߚ} ෡ܰ)} ෡ܰ. 

Now from (3.15), we get
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෨ߘ)         (3.32) ෡ܰ߮)ܺ = − ܺ(෡݂ߘܰ )  ܣ(ܺ)ݑ ෡ܰ ෡ܰ  + + ܺ(ݑ෡ߘܰ )} ,෡ܰ )ߪ  ݂ܺ)} ෡ܰ. 
Using (3.30), (3.31) and (3.32), we obtain

ߘܺ                            ܷ − ܣ)݂ ෡ܰܺ) − ෨ߘ) ෡ܰ߮)ܺ = + ݂ܺߣߚ   ෡ܰ ݂(ܺ)ݒߚ

(3.33) (ܺ)ݑߣߚ}− + )ݑ(ܺ)ݒߚ  ෡ܰ)} ෡ܰ .
Equating tangential part, we have
ߘܺ                                         (3.34) ܷ = + ݂ܺߣߚ  ܣ)݂ ෡ܰܺ) + . ܺ(෡݂ߘܰ )

Since  is parallel, then (3.34) implies

+ ݂ܺߣߚ                                         (3.35) ܣ)݂ ෡ܰܺ) + = ܺ(෡݂ߘܰ )  0 .

Now, if M is totally geodesic then ߞ =  0 , that is, ܣ ෡ܰ =  0 , then from (3.35), we have (3.29).
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