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Abstract

The measured thermal radiation from a material surface will, in general, have a wave length () dependent
scale-factor to the Planck profile (PT) from the contributions of the emissivity (Єߣ) ) of the surface, the response
function (A) of the measurement setup, and the emission via non-Plank processes. For obtaining the absolute
temperature from such a profile, a procedure that take care of these dependencies and which relay on a temperature
grid searchis proposed. In the procedure, the deviation between the Plank profiles at various temperatures and
the measured spectrum that is made equal to it at a selected wavelength, by scaling, is used.  The response
function (A) is eliminated at the measurement stage and the polynomial dependence of the remnant scale factor
mostly dominated by Єߣ)  is extracted from the measured spectrum by identifying its optimal  dependence. It is
shown that when such a computation is carried out over a temperature grid, the absolute temperature can be
identified from the minimum of the above deviation. Here, search for T and Єߣ)  delinked, unlike in the least-
square approaches that are normally employed. Code that implements the procedure is tested with simulated
Planck profile to which different viable values of Єߣ)  and noise is incorporated. It shown that if the  dependence
of scale-factor is not too high, the absolute temperature can be recovered. A large  dependent scale-factor and
the consequent possible error in the temperature obtained can also be identified.
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Introduction

The temperature scale and its measurement is based on the suggestion1 that assigned fixed points
and a prescription to interpolate between those, be used to establish a practical temperature scale. The ITS-90
scale based on international agreement on the specification of the methods for calibrating several kind of
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‘thermometers’ in a way to make the results repeatable and compatible, at all temperature regions and in different
methods of measurements, is based on this approach. It specifies the material properties to be used at several
points where temperature can be held constant and assigned values, cross checked and altered, if necessary.
There are accepted functions and methods for interpolation between these points. The reference temperature
points employed in ITS-90 2A, B, 3, are at the melting / triple points of pure or mixture of materials. Such points can
be identified and temperature at that point held constant utilizing the thermal arrest due to the co-existence of
phases even when the temperature is unknown; T is assigned in a consistent / agreed manner as mentioned
above. The extension of the scale4,5, to higher temperaturesis carried out by measuring the optical power of
emission from a defined surface area and in a chosen narrow wavelength band by filter radiometer6 at newly
identified fixed points. A calibration procedure and specialized experimental set up are used5, 6.  The temperature
is obtained from a least square fit of the observed and computed power by the integration of the Planck profile
over a small selected wavelength region. The fact that this uses typically only a very small part of the Planck
profile and other considerations necessitate correction to be added to the inferred temperature points5, 7. With
three or more points so obtained, Sakuand ma–Hattori-function8 is used for further refinement and for
interpolation between the points. Thus this and an alternate approach9 emphasize on reproducibility and
traceability but do not use the Planckprofile directly, nor the dependence of emissivity on temperature and
wavelength properly taken care off. Thus an approach that do not require temperature at fixed points to be pre-
assigned a value,  prescriptions for interpolation, do not collect extraneous signals (from a surface) and employs
the Planck’sprofile directly, taking care of the dependence of emissivity on material phase, temperature and
wavelength, is desirable for establishing the absolute temperature points and a scale.

The Planck radiation profile derived on the basis of the basic physical laws (quantum principles that
decide the allowed photon states and its occupation as per the Boltzmann distribution) for a ‘black body’ is
material independent and should be exclusively employed to establish the absolute temperature scale. The
idealized situation (i.e. material independence) of a radiation source is obtained in a ‘black body’ (a large cavity
kept at constant temperature)10, as it can be reasonably made to satisfy the assumptions employed in the
derivation of the Planck profile. For practical reasons, a container with the required materials to identify the
temperature point inside it is kept within the cavity and the radiation from the container surface is employed.
The photons collected from container surface will originate from a thin volume (that imitate a cavity) near the
surface and will undergo self-absorption with in its volume, and refraction and scattering at the interface, in a 
dependent way. Thus the spectral intensity irradiated by the surface is a Planck distribution scaled in a  and
material phase dependent way, justifying the use of emissivity (Єߣ) ) as a scale-factor to Plank’s profile. AA
spectrograph that rejects stray signals can yield such a thermal radiation profile.  However the measured profile
will be distorted due to the  dependent response factor (A) of the measuring setup; i.e. the electronic amplification,
the wavelength dependent efficiency of the detector, and the deleterious effects of chromatic aberration /
refraction in the optical elements etc.. Thus the measured profile counts C at a temperature T will have a
composite scale-factor, S, to the Planck profile (PT) as:-

=ߣ∁ ߣܵ ܶܲ I

With  ܶܲ  = λ-5/[݁(ܵ2 ⁄(ܶߣ -1], 

and S2=1.43877x107(nm.K) and S= Єߣ) A with S1 [=3.74177x108(Wµm4/m2)] absorbed in AA.

This composite scale-factor, S that has wave length dependence, is the impediment in establishing a
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temperature scale and its measurement using a measured profile directly. It may be noted that any non-Planck
process, and it will be present because of the self-absorption and re-emission, will further modify this scale-
factor.

In comparison to establishing temperature scale by the fore-mentioned approaches, multi-wavelength
thermometry aims to determine both, temperature and S simultaneously employing equation-I from the measured
spectral radiance at several (say N) wavelengths. There are N measured values and N+1 unknowns (NS values
plus temperature).There are several approaches11; the obvious one is to assume or obtained via calibration, the
values of the N combined scale factors. If for a spectra, temperature, T, is known or assigned a value (what is
normally done), then N different factors by which the observed N intensities needs be multiplied to convert the
observed spectra to the Planck’sprofile can be obtained and employed for the determination of any other
temperature. Additional simplifying assumption like that this scale factor is same at two (or more) agreed
wavelengths makes the procedure easy. Thus the temperature may be obtained in a reproducible manner from
the ratio of intensities at selected wavelengths, employing equation-I. This “effective” temperature is indeed
dependent on the wavelengths chosen and details of  S. Thus, all these aspects need to be specified and
followed in all measurements. Another approximation is to assume S is a polynomial in , reducing the number
of unknowns (four in the case of a third order polynomial) and then carryout a least square refinement. However,
strong correlation between the coefficients of  Sand T will result in divergence problems and most often one
have to resort to a grey body approximation. A delinking of T and the polynomial coefficients (apart from
reducing these as much as possible) is a viable solution to get temperature on an absolute scale and avoiding
the adhocism and error proneness.

Absolute temperature points recovery :

For recovery of absolute temperature corresponding to a profile, a procedure that employ a spectrum
that is corrected for the usually large  dependent response function, A, of  the measuring set up, is considered.
Correcting for the response function is not a serious constraint, as it can be accurately measured by monitoring
the output when the same fixed number of photons of various wavelengths is used as input. For such a
corrected spectrum ( vs C), the equation I may be rewritten as:-

Єߣ = ߣܥ ܶܲ1⁄  II

Єߣ)  in II represents the scale-factor and has contribution mostly from the emissivity of the surface from which
the radiation is collected.  In the following discussion, as the response function has been compensated, emissivity
and scale-factor are used interchangeably. Before proceeding further, the nature of variation of Єߣ)  needs to be
examined. The easily measurable surface reflectivity, r, (Єߣ) =1-r), and a comparison between spectral radiation
intensities measured from a material and a blackbody, are usually used to measure   emissivity (Єߣ) ) as an
intrinsic property12. In the latter case, the accuracy of the measured Єߣ)  is independent of the temperature value
assigned at the measurement point unlike the former case where it depends on the value assigned to the black
body.  Measurements on typical metals like Zr, Rh 13, Ni 14, W, Ta 15, Nb 16 etc. show a smooth negative ë
dependence of Єߣ)  as expected from the fact that the dominant physical process that the emitted radiation
undergo is self-absorption.A material, ZrC 17, with a high melting point shows a relatively small dependence of
Єߣ)  on . Another interesting case is that of graphite nanostructure which has a constant Єߣ)  close to 0.99 over



a wide  and temperature range18 and can be treated as a black body (BB) surface.  Thus Єߣ)  data typically varies
smoothly with  and may be represented by a polynomial in  17.

In the following, assuming a polynomial dependence of Єߣ) on  an approach that can surmount
limitations in establishing the absolute temperature scale is proposed.

With a polynomial approximation of  Єߣ) , II  can be written as:-

ߣܥ ܶܲ1⁄ = Єߣ = Є0[1 + ߣܽ + 2ߣ ܾ + 3ߣ ܿ  + −−]  IIA

where Єo  is the  independent part of  Єߣ)  and a, b, c etc. are the material phase, temperature, and pressure and
 dependent coefficients of the polynomial. A scaling of the counts C by a factor Fa (or the mathematically
equivalent multiplication of  PT1  by Fa) that equalizes the computed and observed count at a particular
wavelength, 1 (ie.  ܽܨ = 1ߣܥ ⁄1ߣܲܶ is the value of  PT1  at the wave length 1) will eliminate any 1ߣܲܶ ;
constant multiplier / scaling (the  independent signal amplification and Є0 ) in the measured spectra and has a
further utility as will be clear from the discussions to follow.  Though 1 can be any wavelength with in the
spectral range of the profile, here (in the codes used in simulations) the wavelength at the middle of the spectral
region is used.

Thus, IIA with the scaled emissivity, ߣݏܥ, takes the form:-

ߣݏܥ ܶܲ1⁄ = Єߣݏ  = [1 + ߣܽ + 2ߣ ܾ + 3ߣ ܿ  +−−] [1 + 1ߣܽ + 1ߣ ܾ
2 + 1ߣ ܿ

3 + −−]⁄ IIIA

This scaling when repeated with a profile at any other temperature, Tg, gives a quantity Єgλ , related to Єߣݏ   as:-

Є݃ߣ = ߣݏܥ ܶܲ݃⁄ IIIB

݅݁. Є݃ߣ = ൣ ܶܲ1 ܶܲ݃⁄ ൧ ߣݏܥ ܶܲ1⁄

ܶℎݏݑ,Є݃ߣ = ൣ ܶܲ1 ܶܲ݃⁄ ൧Єߣݏ IIIC

When the grid point (ܶ݃  ) coincides with true temperature, T1,[PT1/PTg]  will be equal to one. It will be 
dependent andless or greater than unity depending on whether Tg is greater or less than T1 . Again, from III-A
& C it is evident that if Є݃ߣ  is computed and fitted to a polynomial over a temperature grid that encloses T1, as
one move away from T1, higher and higher degree polynomial  will be required for fitting it.  This follows from
the fact that [PT1/PTg] is approximately an exponential function of  T, the deviation of the grid point from the
actual temperature. If a constant polynomial degree (equal to or lower than the actual dependence of  Єߣݏ   at

T1) is used at all grid points then, from III-B, µ (µ=∑(ߣݏܥ−, ߣܧ̈ the summation is over the discrete ; 2(ܩܲܶ

wavelengths of the spectrum and ̈ߣܧ is the emissivity recomputed from the fit of Є݃ߣ  to a polynomial of the
selected constant degree) will have a minimum at the correct temperature. It will increase as the grid point moves
away, because of the increasing misfit. This will happen as long as the change in  variation of Єߣݏ  with
temperature is lower than that of [PT1/PTg] as evident from IIIC. This fixes the range of  variation of the scale-
factor that can be tackled by this procedure. At T1, the  independent part of the scaled emissivity (Єߣݏ  ) will
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approach unity if the Єλ  have only weak  dependence (a, b, & c close to zero in Eq IIIA). Thus, µ minimum can

be employed to get the correct temperature and the deviation of the  independent part of Єߣݏ  at the µ minimum

from unity, to judge the extent of the remnant  dependence of  Єλ . If, µ'[µ'=∑(ߣݏܥ − ߣܧ̈ .i.e , 2(ܩܲܶ   =1
corresponds to emissivity when a, b, c etc. are all zero & Єo  equal to one] is computed, temperature under grey
body approximation can also be identified.

Simulations :

To check the approach, simulated profiles (employing a code planck-p 19) with different parameters
(T,Єo , a & b), slightly  dependent step seize, and various noise levels, in several spectral regions, are generated
and used. The pre-peak spectral region of Planck’s profile has the steepest positive gradient (in contrast to the
negative gradient of emissivity), and as mentioned earlier, will be better suited for a successful application of
the method. With planck-p, simulated profiles can be generated with any starting point and spectral width. For
the results discussed in detail here  (Fig I A & B and Table I), a spectral width of 1000 nm with, a starting point
where the count is about 50 when the highest count is constrained to be between 6x104 to 106, as in a typical
measurement, is used. This is done by scaling the profile and or shifting the starting point.

Material st Є0 a b Єߣ) Range Ts K D Є0ߣݏ  T1 K � TgrK
C[18] 810 .99 0 0 .8-.8 1600 1 .9971 1600 0. 1600
Ta[14] 810 .624 .1913 -.2634 .614-.162 1600 3 1.520 1597 -3 1797
W[14] 810 .5421 -.1756 .0083 .464-.335 1600 2 1.566 1605 +5 1758
Ni[13]+ 670 .2311 .3904 -.3411 .412-.005 1728 3 1.08 1724 -4 2406
Mo[14] 300 .4971 .3715 -.3621 .575-.368 2500 3 .889 2499 -1 2502
Nb(l)[16] 260 .3899 -.0691 .00504 .372-310 2750 2 1.128 2752 +2 2796
W[14] 260 .5032 -.1542 .0168 .464-.335 2800 3 1.272 2801.5 1.5 2965
ZrC(s) [17] 240 .6968 -.2752 .164 .687-.553 3155 3 1.747 3154.5 -.5 3127
ZrC(l) [17] 240 .8666 -.8678 .4961 .642-610 3155 3 1.194 3154.5 -.5 3223
GB 240 .7 0 0 .9-.9 3155 1 .9993 3155 0. 3155
* 240 .1 .3 .2 .183-.778 3155 3 .256 3152.5 +2.5 2789

Table I :- Typical runs for identifying absolute temperature. Literature data on Єߣ)  for the listed materials, a
gray body (GB) and a case of monotonic increase (*) that do not correspond to any material are listed. The
emissivity range covers different variation types; constant, monotonic decrease, minimum (ZrC), and monotonic
increase. The coefficients, Є0 , a and b (c=0 not shown), correspond to the case where  is in micron. For
simulations for Ta(1600K) & Mo(2500K), reflectivity data reported at 300K is used for getting Єߣ) . st is the
optimal starting point of the spectral region used and have a value that varies between 810 and 200
nmdepending on the temperature.Ts, Tr, &Tgr  respectively are the simulation, recovered, and the grey body
temperature.  Є0ߣݏ  is the  independent part of scaled emissivity given by equation IIIA. �  is the difference
between the simulation and recovered temperatures. A polynomial order lower by one as compared to the
value used in the simulation is recovered for W (1600K) and Nb because the ‘b’ value is small and the
procedure gives a preference to a lower poly order.
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This ensures that at low temperature or , the counts are not too low and the generated spectrum
covers the pre-peak and peak region of the profile optimally. Such starting point depends on the temperature
and planck-p can locate it. Tests have also been carried out with two other fixed starting points 600 and 400 nm,
both with different spectral widths (500 /750 /1000 nm). For spectral width lower than 500 nm the procedure
works better if the pre-factor is almost  independent.  The spectral width of 1000 nm is optimal to avoid error in
the recovered temperatureeven in presence of anomalous  dependence (maximum/ minimum or large variation)
of emissivity / pre-factor and in any spectral region. Instead of using arbitrary values the coefficients (Єo , a &
b), those of some materials listed in Table I is used. Thus the requirement that  Єߣ)  needs to be positive in the
spectral region considered and should mostly decrease with increasing  as indicated by the measured emissivity
is met. This not only tests the procedure described here but will also demonstrate how it will perform in practice.
The scaled Planck profile is multiplied by Єߣ)  and random numbers of magnitude, within a choose-able limit
(=FxN, N, square root of the count, F a random fraction between -1 and 1) is added as noise, only after its scaling
mentioned above. This ensures that scaling do not dilute the effect of noise and Єߣ)  in the final profile. AA
background is also generated and added to the profile to imitate the dark noise of a detector. The profile and the
background are stored in separate files. This is to enable subtraction of the separately measurable dark noise
while processing measured data.   Thus with a slightly unequal step seize in , added noise, provision to remove
dark noise of the detector, and ability to choose a convenient spectral region with sufficient counts, the
simulated data used in testing mimics a typical measurement well.

For extracting absolute temperature from the simulated profiles, a code (a-temp 19 that will generate
temperature grid points, Tg, (Tg= Tt±,  variesin steps of 0.5 K from - to ; Tt is a trial temperature that differ

from real temperatures T1  by a maximum of ±) and compute at each grid point, Є݃ߣ  , µ and  µ’ is used.

Fig I Results of the procedure to identify absolute temperature for W at two temperatures. The insert is the
variation of µ in the ±50 K region of the recovered temperature. The search region can be increased to ±1400 or
more (depending on temperature) without any divergence problem and thus effectively no information on T or
remnant scale factor (guess or preassigned) required.  Details of all the simulations discussed in the text are
included in the Table I

While dealing with measured spectra no information on the dependence of remnant Єߣ)  will be
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available and hence the issue as to how to pre-decide which polynomial order is to be employed while analyzing
the data needs to be solved. This is addressed by comparing the values of Dµ(D, square root of the order of the
polynomial) for various values of D and accepting the polynomial order that gives the lowest Dµ, at each grid
point. This may lead to a preferential selection of a lower order polynomial, but this decision is based on an
‘estimate’ from the data and consistent with the requirement of the procedure. In all tests carried out, this
approach correctly recovers the polynomial order used in the simulation unless the coefficients of the highest
power in  are very small. In such cases, a polynomial order lower by one as compared to the value used in
simulation is recovered. But such lower polynomial order does not result in any large variation between the
recovered temperature and that used in simulation. To retain flexibility, a-temp can pre-assume a particular fixed
polynomial order for all grid points or search and identify a polynomial order that has lowest Dµ at each grid
point, in two separate mode of operation. Keeping in view of measurement situation, it also incorporates a
Savitzky-Golay Filter20 to eliminate the random fluctuations in the profile. Up to ten temperature pairs for which
µ is low and arranged in its increasing magnitude is stored to check whether the minimum in µ is approached
monotonically and how far the  independent part of  Єߣݏ is different from unity. This enables checking whether
the accuracy of T1 is compromised by a large  dependence (magnitude do not affect accuracy because of the
scaling used) of  Єߣ) . The monotonicity of  µ will be broken  if there is too much noise in the spectra or an
inappropriate  polynomial order gets selected (as inferred from the few of theseveral simulations) because of the
peculiarities / wiggles in the  dependence of  Є݃ߣ . If the trial temperature is too far from the correct temperature,

the  independent part of  Єߣݏ  will substantially deviate from unity (because Є݃ߣ= Єߣݏ [PTg/PT2]) and also there
will not be any µ minimum.  A-temp detects such error conditions and will suggest whether to increase the error
range / change the trial value of temperature, or use an appropriate constant polynomial order. It may be noted
that unlike in a nonlinear least square procedure, no guess values of T, Є0 , and the order and the coefficients
of the  Єߣ)  polynomial, needs to be provided and procedure works even for a large search region of T. For
example if T is 1600, one can search 200 -3000 region and locate the correct value.

In simulations, the computation of µ is initially carried out for various orders of the polynomial and the
grid point (temperature) and polynomial order that gives minimum in Dµ is identified. The computations are then
repeated with the identified or the next higher polynomial order.  In such re-computations, a higher polynomial
order is employed only if the lower one results in a non-monotonic variation of µ with T (none of the cases listed
in table I needed this). This is justified because the procedure to identify D gives an over weightage to a lower
order polynomial as indicated earlier. Results listed in Table I, uses simulated spectra with listed polynomial
coefficients for emissivity and added maximum noise of ±0.5FxN. Result of typical runs for a black body (BB)
imitating graphite nanostructure (1600), grey body(3155 K), W (1600 & 2800 K), Ta (1600 K), Nb (2750 K), and
ZrC (3155 K for melt and solid data) are summarized in Table I.  Typical result of fitting for W is shown in fig IA
& B.  The temperature points used are dictated by the available data on Єߣ)  and do not have any other
significance. Єߣ)  data available as tabulation (Ta & W) has been fitted to a polynomial and the coefficients used.
Table I also lists a case where the emissivity monotonically increases with temperature and do not represent any
material. Several other simulations were made successfully, but are not discussed here.

From the results of simulations (listed in Table I & several others), the following conclusions are
reached. It may be noted that the accuracy of the procedure is indicated by how far the recovered temperature
is different from that used in simulating the profile. The monotonic variation of µ over the grid and closeness of

Є0ߣݏ   to unity is how the accuracy of recovered temperature needs to be accessed. The µ value have the steepest
variation, lowest value at its minimum and the recovered temperature closest to that used for simulation, for
graphite nano structure and grey body (GB) profiles (Table I). Here, Є0ߣݏ   is close to unity at the correct
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temperature irrespective of the magnitude of  Є0  used in simulation. Though at the minimum of µ, a polynomial
order of one is detected, as one moves away from the temperature value used for simulation, Єsλ  gets fitted to
polynomials of higher and higher order as expected from III-C

Other cases listed are those with a various kind of  dependence of  Єߣ) .

Ta &Nb have a small value for the coefficient b for Єߣ) .
Thus, for Nb, a polynomial order of two (instead of three) is detected but the temperatures are recovered.

Widely used W has an emissivity that decreases steeply over the spectral region considered. There is
relatively large error in temperature recovered especially at low temperature (1600 K) where a lower polynomial
of order two is identified.

Ni represents a case in which the emissivity varies over a large range. Consequently, the recovered
temperature has larger errors

In ZnC, the emissivity has only a small variation and hence temperature and polynomial degree are
recovered.

In the case of a positive temperature gradient also temperature and polynomial order is recovered.

In the above last five cases, the  independent part of Єsλ  deviates from unity at the minimum of µ. But
it is seen that for small such deviation, the correct temperature is still recovered. The extent of deviation of the
independent part of  Єsλ  from unity indicates the extent of the  dependence of Єߣ)  and possibility of error in
the recovered temperature. It should be noted that if the spectrum is collected from a carbon nano surface with
a fully A compensated setup, a D and Є0ߣݏ   close to one will be identified and in such a case, the Єߣ)  used here
demonstrate the tolerance of the procedure to the presence of stray signals in such ameasurement.  Thus if one
uses nano-structured graphite as a temperature marker, the method will work even when there is small remnant
 dependence of pre-factor in the measured spectra. Such dependence can originate from the intrinsic emissivity
of the surface, the error in the elimination of spectral response of the system, and the existence of non-Planck
processes, all of which cannot be identified and removed at the time of measurement.

The grey body temperature, as expected, is very different, from absolute temperature (except for BB)
with the deviation decided by the extent of  dependence of  Єߣ) .  For a negative  dependence of  Єߣ)  that is
normally found, under the grey body approximation, the temperature is overestimated.

 The effect of added noise was also checked [not listed in the table I], and as expected, increasing
noise level resulted in an overall increase in µ. For moderate noise levels (detectable at the filtration stage) there
is no shift in µ minimum. For large noise levels, a non-monotonicity in the variation of µ over the temperature
grid and shifts in minimum is observed. This error condition which needs to be eliminated at the measurement
stage will be detected by a-temp. The noise level used in the simulations here is enough to correspond to a
typical measurement condition.

In addition to noise, the procedure should be unaffected by other interferences also. The effect of the
uncertain Єߣ)  of the material surfaces due to non-intrinsic factors like surface creep, texture/roughness, formation
of over-layers (oxides/nitrides) etc. needs consideration.  These, when present, can make Єߣ)  value somewhat
heating history and time dependent. Also these can scatter the emitted radiation and vary the ‘effective’ Єߣ) 
with time in a random way during data collection. Several thermal cycling of the surface prior to the actual
measurement and keeping the material in inert atmosphere will alleviate this problem to a large extent. In the
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Planck profile, Єߣ)  appear as a scaling factor. Thus the random variations in Єߣ)  can be replaced with an effective
(time averaged) Єߣ) , provided the spectra over the entire  band employed is acquired simultaneously with an
area detector.  Since the procedure described here does not need any prior knowledge of the magnitude or 
dependence of emissivity, it will work even in presence of such an averaging. In measurements, it is indeed
observed that such random variations in emissivity do not affect the inferred temperature21. Since the 
dependence of emissivity and not its magnitude that decide the accuracy of recovered temperature, it will be
desirable to reduce such dependency as much as possible. In this context, the large and the almost   independent
throughput over a wide wavelength region and non-corruption by higher order diffraction, is a clear reason to
favor a prism based spectrometer.  This along with an area detector and con-focal input optics will enable
successful application of the method discussed here.  If the non-Planck processes give only a smoothly
varying background, it will get absorbed in the polynomial dependence of scale-factor and is already taken care
off in the procedure. Thus with carefully conducted experiments the absolute temperature can be extracted
without any pre-assigned fixed points even in presence extraneouscontributions. The envisaged procedure will
still use cavities with appropriate material corresponding to a temperature point inside a container to which a
temperature marker is also attached. Thus cavity’s role is to ensure constancy of temperature while the spectrum
is being collected from the temperature marker.

Conclusions

If the response function of a setup can be independently measured, then a profile measured from any
material whose emissivity is a smoothly varying function of  can be used to obtain the corresponding absolute
temperature. It is better to use a prism based setup for measurements because of the low  dependent A and
non-interference from higher order diffraction.  In such a case, the elimination of Amay not be necessary.
Thus, it is possible to establish the absolute temperature scale without any assigned fixed points and
interpolation/extrapolation procedure. This requires no trial values of emissivity to be known as it is ‘estimated’
from the data itself; there is a matrix for judging the accuracy of the recovered temperature.  There is a complete
decoupling in identifying the  dependence of Єߣ)  and the temperature so that problem of divergence is eliminated
and full range of temperature can be scanned to identify the correct temperature. Also it is established that the
accuracy of the recovered temperature do not depend on the magnitude of the emissivity but only on its
wavelength dependence thus reducing the role of cavities only to provide constancy of temperature. Thus the
criticism22 of employing cavities as black body standards becomes irrelevant. It may be mentioned that based
solely on Planck’s profile, any arbitrary temperature can also be identified if the marker is attached to a large
thermal mass so as to have a constant temperature during measurements.

The requirement that the spectral response of the system should be independently measured is an
impediment for the routine use of this approach. Thus it is useful to investigate whether the procedure can be
extended to systems with unknown response. Indeed, if T1 is a temperature identified as per the procedure, a re-
measurement of the profile,PT1, at T1 with a system of unknown response can be used to identify any temperature,
T2,  that corresponds to any other profile, PT2, measured with the same setup. This extension of the approach
will be similar to the calibration procedure11 and will be addressed in a subsequent publication.

Data Availability :

The data used in this study are available from the author upon request / from googledrive link19.
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