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Abstract

Chemical graph theory is a branch of graph theory whose focus of interest is to finding topological
indices of chemical graphs which correlate well with chemical properties of the chemical molecules. In this
paper, we compute the Nirmala index, first and second inverse Nirmala indices for some chemical networks like
silicate networks, chain silicate networks, hexagonal networks, oxide networks and honeycomb networks
along with their comparative analysis.
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1. Introduction:

In this paper, we consider finite, simple, connected graphs. Let G = (V, E) bea graph. The degree d (V)
of a vertex v is the number of vertices adjacent tov. The edge connecting the vertices u and v will be denoted by
uv. We refer to* for undefined term and notation.

A molecular graph or a chemical graph is a simple graph related to the structure of a chemical compound.
Each vertex of this graph represents an atom of the molecule and its edges to the bonds between atoms. A
topological index is a numerical parameter mathematically derived from the graph structure. Several topological
indices? are useful for establishing correlation between the structure of a molecular compound and its
physicochemical properties,34°,
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InS, the Nirmala index and Nirmala exponential of a molecular graph G were introduced and they are
defined as

NGO = Y Ji@+d and N(Gx)= Y (A,

w €E(G) uveE(G)
In’, the first and second inverse Nirmala indices of G were introduced and they are defined as
1

: 1 1 T2
o= leyratl gy @)= 3 [Aoa o]
w eE(G) UVEZE%G) dG (u) dG (V)

Recently, some Nirmala indices were studied in® 1%, Many other topological indices were studied, for
example in 11,12, 13, 14,15, 16, 17, 18

In this paper, we compute the Nirmala index, inverse Nirmala indices for some chemical networks. For
more details on some chemical network, we refer to'°.

2. Results for Silicate Networks :
Silicates are obtained by fusing metal oxides or metal carbonates with sand. A silicate network is

symbolized by SL , where n is the number of hexagons between the center and boundary of SL . A silicate
network of dimension two is depicted in Figure 1.

Figure 1. Silicate network of dimension two
In the following theorem, we compute the Nirmala index and its exponential of SL .
Theorem 1. Let SL_be the family of silicate networks. Then
(i) N(SL,) = (1+~/2)54n% + (6+/6 +18—36v/2)n.
(i) N(SL,,x) = 6nx'® + (18n2 + 6n)x® + (18n? —12n)x32.

Proof: Let G be the graph of a silicate network SL_with [V(SL )| = 15n?+ 3n and |E(SL )| = 36n°. By
algebraic method, in SL_ there are three types of edges based on the degrees of end vertices of each edge as
follows:

E,={uveE(G)|d (u)=d (v)=3},|E,]=6n.
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E,={ueE(G)|d,(u) = 3,d,(v) = 6}, |E,| = 18n2+6n.
E,, = {uweE(G)|d_(u) = d (V) =6}, [E_,|= 18n2—12n,

12| =

By using the definitions and cardinalities of the edge partition of SL_, we deduce

M N(SL,)= >, Jds (W +dg (v) _(3+3)z 6n+(3+6)2 (18n° +6n)+(6+6)2(18n —12n).

uveE(G)
After simplification, we get the desired result.

(ii) N(SLn,X Z yV0e (u)+dg (v) 6nx(3+3)z +(18n2 +6n)x(3+6)2 +(18n? 12n)nx(6*6)2
uveE(G)

After simplification, we get the desired result.
In the following theorem, we compute the first and second inverse Nirmala indices of SL_

Theorem 2. LetSL be the family of silicate networks. Then

i 1 2 1 2
) IN,(SL,) = (\/_ \/_j18n {\/§+ﬁ_ﬁ}m

() IN,(SL,)=(+2 ++/3)18n? +(%+\/§—2\/§J6n.

Proof: From definitions and by cardinalities of the edge partition of SL_, we deduce

1 1 1 1
. _ 1 1 2 1 1\2 1 1\2 1 1\2
B IN,(SLy)= 2 {de(u)erG(v)} =(3+3) on+(3+5) @enrom+(5+g) en®—120)

uveE(G)

After simplification, we get the desired result

1

3 L L L

(i) IN(SLy) = Y {L+L} o) Fon+ (B d) T asnt+on) + (B4 1) 7 (a8n? — 120)
weete) dg (W) dg (v)

After simplification, we get the desired result.

3. Results for Chain Silicate Networks :

We now consider a family of chain silicate networks. This network is symbolized by CS_and is
obtained by arranging n tetrahedral linearly, see Figure 2.

A__A__A__A
NV

Figure 2. Chain silicate network
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In the following theorem, we compute the Nirmala index and its exponential of CS

Theorem 3. Let CS_ be the family of chain silicate networks. Then
() N(CS,) = (/6 +12+3v2)n+46 + 6 — 6+/2.

(i) N(CS,, %) = (n+4)x"® + (40— 2)x* + (n - 2)nx>?

Proof: Let G be the graph of chain silicate networks CS_with [V(CS )| = 3n +1 and |[E(CS )| = 6n. By
algebraic method, in CS , n > 2, there are three types of edges based on the degree of the vertices of each edge
as follows:

E,={uveE(G)|d (u)=d (v) =3}, [EJ=n+4.

E,={uveE(G)|d (u)=3,d (v) =6}, [E=4n-2.

E,,={uveE(G)|d (u)=d.(v) =6}, [E,|=n-2.

By using the definitions and cardinalities of the edge partition of SL_, we deduce

) N(Cs,)= > Jdg (W) +dg (v) (3+3)2(n+4)+(3+6)2(4n 2)+(6+6)2(n 2).

UVEE(G)
After simplification, we get the desired result.

(i) N(CS,,x)= Z X CROEAD) = (n +4)x(3+3)2 + (4n — Z)x(3+6)2 +(n— Z)nx(6+6)2
uveE(G)

After simplification, we get the desired result.
In the following theorem, we compute the first and second inverse Nirmala indices of CS

Theorem 4. Let CS be the family of chain silicate networks. Then

x/§41J4\/_22

NERNZAN ] 2 B

0 |N1(csn)=[ NN

(i) IN,(CS,) = [\§+4I+Ijn+4f 242 - 2./3.

Proof: From definitions and by cardinalities of the edge partition of CS_, we derive

1 1 1
. _ 1 1 2 1 1y 1 1\2 1 1\2
() N (CS)= 2, {dG(u)erG(v)} =(3+ 3) e+ +(5+5) Un-2+(5+5) -2

uveE(G)
After simplification, we get the desired result

1
. _ 1 1 T2 1 1,3 1 1, 1 1,2
(i) N, (CSh)= 2, {dG(U)erG(v)} =(5+3) @r9+(3rg) @n-2+(grg) -2

uveE(G)

After simplification, we get the desired result.
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4. Results for Hexagonal Networks

It is known that there exist three regular plane tilings with composition of same kind of regular polygons
such as triangular, hexagonal and square . Triangular tiling is used in the construction of hexagonal networks.
This network is symbolized by HX , where n is the number of vertices in each side of hexagon. A hexagonal
network of dimension six in shown in Figure 3.
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Figure 3. Hexagonal network of dimension six
In the following theorem, we compute the Nirmala index and its exponential of HX

Theorem5. Let HX_ be the family of hexagonal networks. Then
(i) N(HX ) =54n + (12410 1862 )n +12+/7 +18 +144+/2 — 244/10.

(i) N(HX,,x) =12x77 +6x + (6n—8)x22 + (12n - 24)x" + (6n2 —33n + 30)x°Y2.

Proof : Let G be the graph of hexagonal network HX with [V(HX )|=3n?—3n+ 1and |[E(HX )|=9n*-15n
+6. In HX , by algebraic method, there are five types of edges based on the degree of the vertices of each edge
as follows:

E,={uweE(G)|d,(u)=3,d,(v) =4}, |E|= 12
E,={uweE(G)|d,(u)=3,d(v) =6}, |E,| = 6.

E, = {uveE(G) | d (u) = d (v) = 4}, |E,| = 6n— 18,

E, = {ueE(G)|d,(u)=4,d (v) =6}, [E,|=12n-24.
E,, = {ueE(G)|d ()= d (v) =6}, |E,| = 9n2—33n+30.

By using the definitions and cardinalities of the edge partitions of HX_, we deduce

@) N(HX,)= > dg(u)+dg (V)

uveE(G)
1 1 1 1 1
=(3+4)212+(3+6)26+(4+4)2(6n-18) +(4+6)2 (12n—24) +(6+6)2 (9n* —33n + 30).

After simplification, we get the desired result.
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() N(HX,x)= 3 x/0ee®

uveE(G)

=12x37 1 6x3+07 4 (6n-18)x“** + (120 - 24)x'*®” 4 (9n? — 33n +30)x*0*,
After simplification, we get the desired result.

In the following theorem, we compute the firstand second inverse Nirmala indices of HX

Theorem 6. Let HX be the family of hexagonal networks. Then

9 (6 635 33J L8712 125 30

G\ 2TEB"E 2B

(i) IN,(HX,)=

(i) IN,(HX,)=93n +£6\/§+ N 33@}“«/7 1242 NG +304/3.

Proof : From definitions and by cardinalities of the edge partitions of HX , we derive

1
. 1 1 |2
O Ny (HX0)= 2, {dG(u)erG(v)T

uveE(G)

1 1

=G s () (el o9 (o o
11
+<6+6) (9n2 — 33n + 30).

After simplification, we get the desired result.

1
. 1 1 |2
(i) IN,(HX,)= > {dG(U)_’_dG (v)} 2

uveE(G)
1 1 1 1
_ (1 N 1)‘? 19 + (1 N 1)‘? 6+ (1 N 1)‘? ® 18) + (1 N 1)‘? (12 24)
372 36 272 n 276 n

1
+(1+1>_§92 33n + 30
515 9n n ).

After simplification, we get the desired result.
5. Results for Oxide Networks

The oxide networks are of vital importance in the study of silicate networks. An oxide network of
dimension n is denoted by OX . A5-dimensional oxide network is shown in Figure 4.
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Figure 4. Oxide network of dimension 5
In the following theorem, we compute the Nirmala index and its exponential of OX

Theorem 7. Let OX_ be the family of oxide networks. Then
(i) N(OX,)=36v2n* + (126 — 2442)n.
(i) N(OX,,x)=12nx' +(18n? ~12n)x2"2.
Proof: Let G be the graph of oxide network OX with [V(OX )|=9n*+ 3nand [E(OX )|=18n? In OX , by
algebraic method, there are two types of edges based on the degree of the vertices of each edge as follows;
E,={uveE(G)|d (u)=2,d.(v) =4}, |E/|=12n.
E,={uveE(G)|d (u)=d (v) =4}, |E,]=18n*~12n.
By using the definitions and cardinalities of the edge partition of OX _, we deduce

(i) N(OX,)= D dg(uw+dg(v) =(2+4)§12n+(4+4)§(18n2—12n).

uveE(G)
After simplification, we get the desired result.

(i) N(OX, x)= > xVC@de) o @i ggn2 jon o
uveE(G)
After simplification, we get the desired result.

In the following theorem, we compute the first and second inverse Nirmala indices of OX

Theorem 8. Let OX be the family of oxide networks. Then

(i) IN,(OX, )= ﬁn +[6[ fJ

(ii) INZ(OXn)=18\/§n2+[%—12\/§Jn.

Proof: From definitions and by cardinalities of the edge partitions of OX , we derive
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1

1 1
. 1 1 2 1 1y 1 1\2
IN,(OX,)= Y | ———+——| =(Z+= i _
B IN,(0X,) uveE(G){dG(u)erG(v)} (2+4) 12"+(4+4) (18n° — 12n).

After simplification, we get the desired result.

1 1
.. 1 1 2
(i) N2 (0%a)= 2. |:d(3 (u)+dG (v)} 2 :(E+E) 212n+(1+%) 2(18n2—12n).

uveE(G)
After simplification, we get the desired result.

6. Results for Honeycomb Networks

If we recursively use hexagonal tiling in a particular pattern, honeycomb networks are formed. These
networks are very useful in chemistry and also in computer graphics. A honeycomb network of dimension n is
denoted by HC_where n is the number of hexagons between central and boundary hexagon. A 4-dimensional
honeycomb network is shown in Figure 5.

Figure 5. Honeycomb network of dimension four
In the following theorem, we compute the Nirmala index and its exponential of HC
Theorem 9. Let HC_ be the family of honeycomb networks. Then
(i) N(HC,)=9v6n* +(12+/5 —156)n+12 -12/5 + 6:/6.
(i) N(HC,,x)=6x% +12n-12)x"® +6x 2" x* 1 (9n2 —15n + 6)x 6.

Proof : Let G be the graph of honeycomb network HC_ with [V(HC )|=6n*and |[E(HC )| = 9n*-3n. In HC,
by algebraic method, there are three types of edges based on the degree of the vertices of each edge as follows:

E,={uweE(G)|d (u)=d (v) =2}, E|=6.
E.={uweE(G)|d,(u)=2,d (v) =3}, |E|=12n-12.
E, = {uveE(G)| d (u) = d (v) = 3}, [E = 9n2—15n+6.
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By using the definitions and cardinalities of the edge partition of HC , we deduce

(i) N HC
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= > dg(u)+dg (v) _(2+2)26+(2+3)2(12n 12)+(3+3)z (9n? —15n +6).

uveE(G)

After simplification, we get the desired result.

(i) N(HC,,x)=

X,lde(u)+de(v)

uveE(G)
After simplification, we get the desired result.

=6x°+(12n— 12)x

+(9n?

-15n+ 6)x‘/g

In the following theorem, we compute the first and second inverse Nirmala indices of HC

Theorem 10. Let HC_ be the family of honeycomb networks. Then

. 92 o 125 152 12J€+6ﬁ

(i) INJ(HC,)= " (\/_ \/_J +6— IR
93 , (126 153 126 63

(ii) IN(HC)—\/, [[ \/_]+6—\/g+\/§.

Proof : From definitions and by cardinalities of the edge partition of HC , we derive

1 1 1 1
. 1 1 |2 1 1\2 1 1 1\2
(i) IN,(HC, )= {} =% _) G+ ) ~12)+ (3+2) on - |
1(HC,) w;@ MM 5+3) 6+ (5+3) @2n—12)+(5+3) (9n? ~15n+6)
After simplification, we get the desired result
- 1 2 1 1z A 1z 1 1,72
ii) IN,(HC, )= —+ Y i _ i 2 _
(i) 1N (HC, ) w;«;) dg (u) dG(V):| (2+2) 6+(2+3) (12n 12)+(3+3) (On” =150 +6).

After simplification, we get the desired result.

7. Data Set of Computed Values :

In order to find the usefulness of topological index, we have to predict the coefficient of correlation
between the physico-chemical properties and the calculated topological indices. For different values of n, the
indices are calculated and tabulated below. By using these values, we plot the below graphs and find the
coefficient of correlation.

Table - 1. Values of Nirmala type of indices of some chemical networks

Nirmala type] n=1 n=2 n=3 n=4 n=5 n==6 n=7
of Indices
N(SLy) 1121528 | 485.0406 1118.6635 2013.0215 | 2013.0215 4583.9427 6260.5058
N(CS,) 26.0048 | 44.6969 63.3891 82.0812 100.7733 119.4655 138.1576
N(HXy,) 6.4047 | -56.6917 -11.7881 141.1155 402.0192 770.9228 1247.8264
N(0Xy) 46.3644 | 1945523 4445634 796.3980 | 1250.0560 1805.5373 2462.8420
N(HC,) 12.0000 | 68.2267 168.5442 312.9525 5014517 734.0416 1010.7224
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N(SLa,x) | 360000 | 1646.2108 | 184491382 |106691.3909 [4217456796 | 1303668.6281 [3304072.4443
N(CS,.x) | 60000 | 807734 | 6904508 | 40015985 |16567.6633 | 536002137 |144956.4051
N(HX,,x) | 70000 |-4148.8559 |-166733.2066 |-766963.2476(1.2804*10"7 | 1.9236*10"8 |1.3784*10"9
N(0X,.x) | 180000 | 4720372 | 3348.4524 | 13540.7286 |40079.3200 | 972882232 |205890.8075
N(HC,x) | 180000 | 3851995 | 2788.4858 | 13109.9202 |49894.9392 | 169119.5302 |533857.6448
IN\(SL,) | 253336 | 969077 | 2147223 | 3787773 | 5890728 8456087 | 1148.3850
INI(CS,) | 49193 | 91416 13.3639 175862 | 21.8084 26.0307 30.2530
IN;(HX,) | 06406 | 9.1652 28.0820 573911 | 97.0925 1471862 | 2076723
IN;(OX,) | 146349 | 547257 | 1202724 | 2112748 | 327.7332 4696473 | 637.0173
IN\(HC,) | 60000 | 267524 | 622018 1123480 | 1771913 2567314 | 3509685
INy(SL,) | 516819 | 2166293 | 4948423 | 8863207 | 1391.0647 2009.0742 | 2740.3492
INy(CS,) | 72200 | 158338 | 244474 330611 | 416747 50.2884 58.9020
IN(HX,) | -09716 | 157117 | 635719 1426090 | 2528231 3042140 | 566.7819
IN(0X,) | 223417 | 955951 | 2197601 | 3948369 | 620.8253 807.7255 | 12255373
IN,(HC,) | 60000 | 338423 | 837300 1556631 | 2496416 3656655 | 503.7348

8. Comparative Analysis :

In this section, we will compare the result of Nirmala type of indices of certain networks in graphical
form. Different colors have been used to represent the behavior of the indices for certain networks in the form
of graphical lines. And these graphs have been generated by putting different values of n and x, mentioned in
above Table.1. A comparison is made in figure. 6 and figure.7, the above mentioned networks are very close at
the beginning and then grew. Among the five structure of networks, silicate network (SL,) is most powerful
compare to other structure of networks. The chain silicate (CS,) grew more slowly than other networks. From
the vertical axis of the graph N(G), IN1(G) and IN2(G), it is clear that the indices for different networks grew
in the following order.

il

Permuala i of
L
&

S, < HX, < HC, < 0X, < SL,

Figure.6: Graphical reprasentation of N[G) and N(G,x) of certain networks.
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Figure.7: Graphical reprasentation of IN1{G) and IN2(G) of certain networks

9. Conclusion

In this paper, we have computed Nirmala type indices of certain networks. These results are helpful to

understand the deep behavior of the networks. The coefficient of correlation of N(CS;), IN;(CS,) and
IN2(CSy) is 1 which shows that the line is linearly fitted. This indicates that the Nirmala and inverse Nirmala
indices are theoretically fit for the chain silicate network (CSp).

10.

Open Problem

Find the values of different types of Nirmala indices of certain classes of chemical graphs and explore

some results towards QSPR/QSAR/QSTR Model.
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