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Abstract

Chemical graph theory is a branch of graph theory whose focus of interest is to finding topological
indices of chemical graphs which correlate well with chemical properties of the chemical molecules. In this
paper, we compute the Nirmala index, first and second inverse Nirmala indices for some chemical networks like
silicate networks, chain silicate networks, hexagonal networks, oxide networks and honeycomb networks
along with their comparative analysis.
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1. Introduction:

In this paper, we consider finite, simple, connected graphs. Let G = (V, E) be a graph. The degree dG(v)
of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by
uv. We refer to1 for undefined term and notation.

A molecular graph or a chemical graph is a simple graph related to the structure of a chemical compound.
Each vertex of this graph represents an atom of the molecule and its edges to the bonds between atoms. A
topological index is a numerical parameter mathematically derived from the graph structure. Several topological
indices2 are useful for establishing correlation between the structure of a molecular compound and its
physicochemical properties,3,4,5.
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In6, the Nirmala index and Nirmala exponential of a molecular graph G were introduced and they are
defined as

(ܩ)ܰ = ෍ ඥ݀(ݑ)ܩ + (ݒ)ܩ݀
(ܩ)ܧ∋ݒݑ

    and       

 
, .G Gd u d v

uv E G
N G x x 



 
 In7, the first and second inverse Nirmala indices of G were introduced and they are defined as
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Recently, some Nirmala indices were studied in8, 9, 10. Many other topological indices were studied, for
example, in 11, 12, 13, 14, 15, 16, 17, 18.

In this paper, we compute the Nirmala index, inverse Nirmala indices for some chemical networks. For
more details on some chemical network, we refer to19.

2.  Results for Silicate Networks :

Silicates are obtained by fusing metal oxides or metal carbonates with sand. A silicate network is
symbolized by SLn, where n is the number of hexagons between the center and boundary of SLn. A silicate
network of dimension two is depicted in Figure 1.

Figure 1. Silicate network of dimension two

In the following theorem, we compute the Nirmala index and its exponential of SLn.

Theorem 1.  Let  SLn be the family of  silicate networks. Then

(i)    2( ) 1 2 54 6 6 18 36 2 .nN SL n n    

(ii) 6 2 3 2 3 2( , ) 6 (18 6 ) (18 12 ) .nN x nx n n x nSL n x    

Proof: Let G be the graph of a silicate network SLn with |V(SLn)| = 15n2 + 3n and |E(SLn)| = 36n2. By
algebraic method, in SLn there are three types of edges based on the degrees of end vertices of each edge as
follows:

E6 = {uvE(G) | dG(u) = dG(v) = 3}, |E6| = 6n.
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E9 = {uvE(G) | dG(u) = 3, dG(v) = 6}, |E9| = 18n2
 + 6n.

E12 = {uvE(G) | dG(u) = dG(v) = 6}, |E12| = 18n2
 – 12n.

By using the definitions and cardinalities of the edge partition of SLn , we deduce

(i)      
 u E G

n G G
v

N d u d vSL


       
1 1 1

2 22 2 23 3 6 3 6 (18 6 ) 6 6 (18 12 ).n n n n n       

After simplification, we get the desired result.

(ii)       

 
, G Gd u d

E G
n

v

uv
SN x xL 


       

1 1 1
2 2 23 3 2 3 6 2 6 66 (18 6 ) (18 12 ) .nx n n x n n nx      

After simplification, we get the desired result.

In the following theorem, we compute the first and second inverse Nirmala indices of SLn..

Theorem 2.  Let SLn. be the family of silicate networks. Then

(i)  2
1

1 1 2 1 2( ) 18 6 .
2 3 3 2 3nIN nSL n

         

(ii)          2
2

3( ) 2 3 18 2 2 3 6 .
2nIN L n nS

 
      

Proof: From definitions and by cardinalities of the edge partition of SLn ,  we deduce
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After simplification, we get the desired result
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After simplification, we get the desired result.

3. Results for Chain Silicate Networks :

We now consider a family of chain silicate networks. This network is symbolized by CSn and is
obtained by arranging n tetrahedral linearly, see Figure 2.

Figure 2. Chain silicate network



In the following theorem, we compute the Nirmala index and its exponential of CSn. .

Theorem 3. Let CSn be the family of chain silicate networks. Then

(i)  ( ) 6 12 3 2 4 6 6 6 2.nN nCS      

(ii) 6 3 3 2( , ) ( 4) (4 2) ( 2) .nN x n x n x n nxCS      

Proof: Let G be the graph of chain silicate networks CSn with |V(CSn)| = 3n +1 and |E(CSn)| = 6n. By
algebraic method, in CSn, n  2, there are three types of edges based on the degree of the vertices of each edge
as follows:

E6 = {uvE(G) | dG(u) = dG(v) = 3}, |E6| = n + 4.
E9 = {uvE(G) | dG(u) = 3, dG(v) = 6}, |E9| = 4n – 2.
E12 = {uvE(G) | dG(u) = dG(v) = 6}, |E12| = n – 2.

By using the definitions and cardinalities of the edge partition of SLn , we deduce

(i)       
 u E G

n G G
v

N d u d vCS


       
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2 2 23 3 ( 4) 3 6 (4 2) 6 6 ( 2).n n n        

After simplification, we get the desired result.

(ii)       
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After simplification, we get the desired result.

In the following theorem, we compute the first and second inverse Nirmala indices of CSn..

Theorem 4.  Let CSn. be the family of chain silicate networks. Then

(i)  1
2 4 1 4 2 2 2( ) .
3 2 3 3 2 3nN CSI n

 
       

(ii)  
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Proof: From definitions and by cardinalities of the edge partition of CSn , we derive
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After simplification, we get the desired result
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After simplification, we get the desired result.
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4. Results for Hexagonal Networks

It is known that there exist three regular plane tilings with composition of same kind of regular polygons
such as triangular, hexagonal and square . Triangular tiling is used in the construction of hexagonal networks.
This network is symbolized by HXn, where n is the number of vertices in each side of hexagon. A hexagonal
network of dimension six in shown in Figure 3.

Figure 3. Hexagonal network of dimension six

In the following theorem, we compute the Nirmala index and its exponential of HXn.

Theorem 5. Let  HXn..be the family of hexagonal networks. Then

(i)   2( ) 54 12 10 186 2 12 7 18 144 2 24 10.nN n nHX       

(ii)  7 3 2 2 10 2 6 2( , ) 1 6 (6 8) (12 24) (6 33 30) .2nHN x x x n x n n n xX x        

Proof : Let G be the graph of hexagonal network HXn with |V(HXn)|=3n2 – 3n + 1 and  |E(HXn)|=9n2 – 15n
+ 6. In HXn, by algebraic method, there are five types of edges based on the degree of the vertices of each edge
as follows:

E7 = {uvE(G) | dG(u) = 3, dG(v) = 4}, |E7| = 12.
E9 = {uvE(G) | dG(u) = 3, dG(v) = 6}, |E9| = 6.
E8 = {uvE(G) | dG(u) = dG(v) = 4}, |E8| = 6n – 18.
E10 = {uvE(G) | dG(u) = 4, dG(v) = 6}, |E10| = 12n – 24.
E12 = {uvE(G) | dG(u) = dG(v) = 6}, |E12| = 9n2 – 33n + 30.

By using the definitions and cardinalities of the edge partitions of  HXn., we deduce

(i)       
 u E G

n G G
v

N d u d vHX


 
          

1 1 1 1 1
22 2 2 2 23 4 12 3 6 6 4 4 (6 18) 4 6 (12 24) 6 6 (9 33 30).n n n n             

After simplification, we get the desired result.
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(ii)         

 
, G Gd u d

E G
n

v

uv
HN x xX 


 

                       
1 1 1 1 1
2 2 2 2 23 4 3 6 4 4 4 6 2 6 612 6 (6 18) (12 24) (9 33 30) .x x n x n x n n x            

After simplification, we get the desired result.

            In the following theorem, we compute the first and second inverse Nirmala indices of  HXn..

Theorem 6.  Let  HXn.  be the family of hexagonal networks. Then

(i)    
 

2
1

9 6 6 5 33 6 7 12 12 5 30( ) .
3 2 3 3 3 2 3 3nIN nHX n        

 
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         

Proof :  From definitions and by cardinalities of the edge partitions of  HXn. , we derive
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1
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1
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+
1
6
൰

1
2

(9݊2 − 33݊ + 30). 

After simplification, we get the desired result.

(ii)  
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

            = ൬
1
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+
1
4
൰
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1
3

+
1
6
൰
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2
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1
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+
1
4
൰
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2
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1
4

+
1
6
൰
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2
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           + ൬
1
6

+
1
6
൰
−1

2
(9݊2 − 33݊ + 30). 

After simplification, we get the desired result.

5.  Results for Oxide Networks

The oxide networks are of vital importance in the study of silicate networks. An oxide network of
dimension n is denoted by OXn. A 5-dimensional oxide network is shown in Figure 4.
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Figure 4. Oxide network of dimension 5

In the following theorem, we compute the Nirmala index and its exponential of OXn.  .

Theorem 7. Let  OXn..be the family of oxide networks. Then

(i)      2( ) 36 2 12 6 24 2 .nN nO nX   

(ii)    6 2 2 2( , ) 12 (18 12 ) .nN x nxO n nX x  

Proof: Let G be the graph of oxide network OXn with |V(OXn) | = 9n2 + 3n and |E(OXn)| = 18n2. In OXn, by
algebraic method, there are two types of edges based on the degree of the vertices of each edge as follows;

E6 = {uvE(G) | dG(u) = 2, dG(v) = 4}, |E6| = 12n.
E8 = {uvE(G) | dG(u) = dG(v) = 4}, |E8| = 18n2

 – 12n.
By using the definitions and cardinalities of the edge partition of OXn , we deduce

(i)          
 u E G

n G G
v

N d u d vOX


       
1 1

22 22 4 12 4 4 (18 12 ).n n n    

After simplification, we get the desired result.

(ii)        

 
, G Gd u d

E G
n

v

uv
ON x xX 


       

1 1
2 22 4 2 4 412 (18 12 ) .x n n x   

After simplification, we get the desired result.

In the following theorem, we compute the first and second inverse Nirmala indices of OXn..

Theorem 8.  Let OXn be the family of oxide networks. Then

(i)     
 

2
1

18 12( ) 6 3 .
2 2nOXIN n n

    


(ii)   
 

2
2

24( ) 18 2 12 2 .
3nIN OX n n

    


Proof: From definitions and by cardinalities of the edge partitions of OXn., we derive
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(i)   
 

      
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n

u
IN
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OX
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After simplification, we get the desired result.
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1 1

G Gv E G
n

u
IN

d u d v
OX
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

   
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+
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൰
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2
12݊ + ൬

1
4

+
1
4
൰
−1

2
(18݊2 − 12݊). 

After simplification, we get the desired result.

6.  Results for Honeycomb Networks

If we recursively use hexagonal tiling in a particular pattern, honeycomb networks are formed. These
networks are very useful in chemistry and also in computer graphics. A honeycomb network of dimension n is
denoted by HCn where n is the number of hexagons between central and boundary hexagon. A 4-dimensional
honeycomb network is  shown in Figure 5.

Figure 5. Honeycomb network of dimension four

In the following theorem, we compute the Nirmala index and its exponential of HCn .

Theorem 9. Let  HCn..be the family of honeycomb networks. Then

(i)      2( ) 9 6 12 5 15 6 12 12 5 6 6.nN n nHC      

(ii)    2 5 11 2 6( , ) 6 (1 )2 12 26 (9 15 6) .n
nN x x x x xC nH nn      

Proof : Let G be the graph of honeycomb network HCn with |V(HCn)|=6n2 and |E(HCn)| = 9n2 – 3n. In HCn,
by algebraic method, there are three types of edges based on the degree of the vertices of each edge as follows:

E4 = {uvE(G) | dG(u) = dG(v) = 2}, |E4| = 6.
E5 = {uvE(G) | dG(u) = 2, dG(v) = 3}, |E5| = 12n – 12 .
E6 = {uvE(G) | dG(u) = dG(v) = 3}, |E6| = 9n2 – 15n + 6.
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By using the definitions and cardinalities of the edge partition of HCn, we deduce

(i)         
 u E G

n G G
v

N d u d vHC


          
1 1 1

22 2 22 2 6 2 3 (12 12) 3 3 (9 15 6).n n n        

After simplification, we get the desired result.

(ii)        

 
, G Gd u d

E G
n

v

uv
HN x xC 


     2 5 2 66 (12 12) (9 15 6) .x n x n n x     

After simplification, we get the desired result.

In the following theorem, we compute the first and second inverse Nirmala indices of HCn .

Theorem 10.  Let  HCn be the family of honeycomb networks. Then

(i)    
 

2
1

9 2 12 5 15 2 12 5 6 2( ) 6 .
3 6 3 6 3nHCIN n n

 
       

(ii)   
 

2
2

9 3 12 6 15 3 12 6 6 3( ) 6 .
2 5 2 5 2nHCIN n n

 
       

Proof :  From definitions and by cardinalities of the edge partition of HCn, we derive

(i)  
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
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1
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൰
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൰
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2

(9݊2 − 15݊ + 6). 

After simplification, we get the desired result

(ii)  
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(9݊2 − 15݊ + 6). 

After simplification, we get the desired result.

7.  Data Set of  Computed Values :

In order to find the usefulness of topological index, we have to predict the coefficient of correlation
between the physico-chemical properties and the calculated topological indices. For different values of n, the
indices are calculated and tabulated below. By using these values, we plot the below graphs and find the
coefficient of correlation.

Table - 1. Values of Nirmala type of indices of some chemical networks
 Nirmala type n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
  of Indices

112.1528 (݊ܮܵ)ܰ 485.0406 1118.6635 2013.0215 2013.0215 4583.9427 6260.5058
26.0048 (݊ܵܥ )ܰ 44.6969 63.3891 82.0812 100.7733 119.4655 138.1576
6.4047 (݊ܺܪ )ܰ -56.6917 -11.7881 141.1155 402.0192 770.9228 1247.8264
ܰ( ܱܺ݊) 46.3644 194.5523 444.5634 796.3980 1250.0560 1805.5373 2462.8420
12.0000 (݊ܥܪ )ܰ 68.2267 168.5442 312.9525 501.4517 734.0416 1010.7224
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݊ܮܵ)ܰ , 36.0000 (ݔ 1646.2108 18449.1382 106691.3909 421745.6796 1303668.6281 3394072.4443

݊ܵܥ )ܰ 6.0000 (ݔ, 80.7734 690.4598 4001.5985 16567.6633 53600.2137 144956.4051
݊ܺܪ )ܰ  , 7.0000 (ݔ -4148.8559 -166733.2066 -766963.2476 1.2804*10^7 1.9236*10^8 1.3784*10^9
ܰ( ܱܺ݊ . (ݔ 18.0000 472.0372 3348.4524 13540.7286 40079.3290 97288.2232 205890.8075
݊ܥܪ )ܰ , (ݔ 18.0000 385.1995 2788.4858 13109.9202 49894.9392 169119.5302 533857.6448
ܫ 25.3336  (݊ܮܵ)1ܰ 96.9077 214.7223 378.7773 589.0728 845.6087 1148.3850
ܫ 4.9193 (݊ܵܥ )1ܰ 9.1416 13.3639 17.5862 21.8084 26.0307 30.2530
ܫ 0.6406 (݊ܺܪ )1ܰ 9.1652 28.0820 57.3911 97.0925 147.1862 207.6723
ܫ 1ܰ( ܱܺ݊) 14.6349 54.7257 120.2724 211.2748 327.7332 469.6473 637.0173
ܫ 6.0000 (݊ܥܪ )1ܰ 26.7524 62.2018 112.3480 177.1913 256.7314 350.9685
ܫ 51.6819 (݊ܮܵ)2ܰ 216.6293 494.8423 886.3207 1391.0647 2009.0742 2740.3492
ܫ 7.2201 (݊ܵܥ )2ܰ 15.8338 24.4474 33.0611 41.6747 50.2884 58.9020
ܫ 0.9716- (݊ܺܪ )2ܰ 15.7117 63.5719 142.6090 252.8231 394.2140 566.7819
ܫ 2ܰ( ܱܺ݊) 22.3417 95.5951 219.7601 394.8369 620.8253 897.7255 1225.5373
ܫ 6.0000 (݊ܥܪ )2ܰ 33.8423 83.7300 155.6631 249.6416 365.6655 503.7348

8. Comparative Analysis :

In this section, we will compare the result of Nirmala type of indices of certain networks in graphical
form. Different colors have been used to represent the behavior of the indices for certain networks in the form
of graphical lines. And these graphs have been generated by putting different values of n and x, mentioned in
above Table.1. A comparison is made in figure. 6 and figure.7, the above mentioned networks are very close at
the beginning and then grew. Among the five structure of networks, silicate network (SLn)  is most powerful
compare to other structure of networks. The chain silicate (CSn)  grew  more slowly than other networks. From
the vertical axis of the graph N(G), IN1(G)  and IN2(G), it is clear that the indices for different networks grew
in the following order.

݊ܵܥ < ݊ܺܪ ≤ ݊ܥܪ < ܱܺ݊ < ݊ܮܵ
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9.  Conclusion

In this paper, we have computed Nirmala type indices of certain networks. These results are helpful to
understand the deep behavior of the networks. The coefficient of correlation of  N(CSn), IN1(CSn)  and
IN2(CSn)  is 1 which shows that the line is linearly fitted. This indicates that the Nirmala and inverse Nirmala
indices are theoretically fit for the chain silicate network (CSn).

10.  Open Problem

Find the values of different types of Nirmala indices of certain classes of chemical graphs and explore
some results towards QSPR/QSAR/QSTR Model.
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