ISSN 2231-346X JUSPS-A Vol. 33(4), 42-50 (2021). Periodicity-Monthly ISSH 2319-8044

(Print) (Online)l | | ”H

9 ‘??3331 346004 SeCtlon A ali772319 1 804006

|
\\‘ ”/

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES

An International Open Free Access Peer Reviewed Research Journal of Mathematics
website:- www.ultrascientist.org

e
SHgpaL oW

Estd. 1989

Development of Library Components for Floating Point Processor
SUBHASH KUMAR SHARMA!, SHRI PRAKASH DUBEY? and ANIL KUMAR MISHRA?

!Department of Electronics, M.G.P.G. College, Gorakhpur (India)
Z3Department of Physics, M.G.P.G. College, Gorakhpur (India)
Corresponding Author Email: sksharmal3@yahoo.co.uk

http://dx.doi.org/10.22147/jusps-A/330402

Acceptance Date 13th June, 2021, Online Publication Date 21st June, 2021
Abstract

This paper deals with development of an n-bit binary to decimal conversion, decimal to n bit binary
conversion and decimal to IEEE-754 conversion for floating point arithmetic logic unit (FPALU) using VHDL.
Normally most of the industries now a days are using either 4-bit conversion of ALU or 8-bit conversions of
ALU, so we have generalized this, thus we need not to worry about the bit size of conversion of ALU. It has
solved all the problems of 4-bit, 8-bit, 16-bit conversions of ALU’s and so on. Hence, we have utilized VHSIC
Hardware Description Language and Xilinx in accomplishing this task of development of conversions processes
of ALU.

Key words : Binary, Decimal conversion, Floating point representation, IEEE-754 to Decimal and Decimal
to IEEE-754 Conversion, Simulations and Device Utilization.

Introduction

In this paper there are different types of Conversion Process and Different types of Software are used
to convert the number .In this paper floating Point Processor is used to represent IEEE-754 to Decimal and IEEE-
754 and decimal to IEEE -754 . Here a new design and implementation of a 32-Bit decimal floating point also
presents. And here the sequential Architecture of the Proposed 32-Bit Converter is Synthesized with On Xilinx
Virtex —11 Pro and Virtex-4 FPGA devices. All these are used in Floating Ponit Processor. An Arithmetic and
Logic Unit (ALU) is a combinational circuit that performs logic and arithmetic micro-operations on a pair of
n-bit Operands. Here we reduced the complexity of problems using Latest software after that using these
Software. we can synthesize a processor which troubleshoot our technical problems.

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)

Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021). 43

Converting Binary to Decimal :

A simple technique for converting binary to decimal is to rewrite the binary in terms of powers of two
then adds the terms. Starting from the right most bit, the weight of each bitis 1, 2, 4, 8, etc doubling the value for
each bit. Example: Convert 01011011 to decimal

01011011=0x128+1x64+0x32+1x16+1x8+0x4+1x2+1x1=64+16+8+2+1=91

Converting Decimal to Binary:

The technique for converting binary to decimal can be “reversed” to obtain a technique for converting
decimal to binary. The idea is to subtract out powers of two from the decimal expansion while keeping track of
which powers of two can be subtracted out. Do the following:

1. List the powers of two right to left until you reach the first power of two that exceeds the decimal number
being converted.

2. Put a 0 over the first power of two that exceeds the decimal number (indicating that the decimal value is too
small to contain this power of two). The next lower power of two (to the right) will be smaller than the decimal
value. Put a 1 over this power of two and subtract the power of two from the decimal value.

3. Move right to the next smaller power of two. If this value is larger than the remainder, put a 0 over the power
of two; otherwise put a 1 over the power of two and subtract it from the reminder.

4. Continue until all powers of two have a 0 or 1 over them. This binary integer equals the decimal number.

Example: Convert 91 to binary
1. First we list the powers of two right to left until we exceeded 91 (128 > 91). Put a 0 over 128
0
128 64 32 16 8 4 2 1
2. Since 64 is less than 91 we put a 1 over the 64 and subtract it from 91
0 1
128 64 32 16 8 4 2 1 ,91-64=27
3. Continue with the remainder 27. Since 32 is larger than 27, itgetsa 0. 16 is less than 27 so we put a 1 over the
16 and subtract it from 27

0 1 0 1
128 64 32 16 8 4 2 1
27-16=11

4. Continue. From 11 we can subtract 8, 2, and 1.
01 0 11011
128 64 32 16 8 4 2 1
11-8=3;3-2=1;1-1=0
Therefore 01011011 binary equals 91 decimal. We can check you work by using addition of powers of two to
convert 01011011 to 91 decimal.

Literature review :

Many scientific and engineering applications heavily rely on numerical computation. Since such
applications demand a large range of representable numbers, almost all numerical computation uses floating-
point arithmetic. The IEEE (Institute for Electrical and Electronics Engineers) published in 1985, the IEEE-754
standard for binary floating-point arithmetic*. This standard specifies the representation of floating-point
numbers as well as the behavior of the floating-point operations performed on these numbers. It was followed
two years after by the IEEE-854, radix-independent standard whose major goal was to deal with decimal arithmetic.

a4 Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021).

The Standard “IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, New York:”
IEEE, Inc.%, 2008 describes interchange and arithmetic methods and formats for binary and decimal floating-
point arithmetic®?, in computer programming environments. This standard specifies exception conditions and
their default handling. An implementation of a floating-point system conforming to this standard may be
recognized entirely in software, entirely in hardware, or in any combination of software and hardware.

The normative part of this standard, numerical results and exceptions specified for different operations
in are uniquely determined by the, sequence of operations, values of the input data and destination formats, all
under user control. Jain, Jenil, and Rahul Agrawal et al.? this paper presents design of high speed floating point
unit using reversible logic.

In recent nanotechnology®. Programmable reversible logic design is trending as a prospective logic
design style for implementation and quantum computing with low impact on circuit heat generation. There are
various reversible implementations of logical and arithmetic units have been proposed in the existing research,
but very few reversible floating-point designs has been designed. Floating-point operations are used very
frequently in nearly all computing disciplines. Here in this research paper every type of conversion is done
using synthesis and Simulation Using Latest software, Binary to Decimal conversion Vertex 2Pro, Decimal
to Binary and Decimal to IEEE-754 for Vertex 4 is used. and other Software viz, Model Sim, Xilinx® Virtex—11
Pro. The code we developed to design this converter, conceptually contains something different and interesting.
Floating-point units (FPU) can be implemented in various ways, and the architecture of an FPU has a great
effect on its overall performance, area and power dissipation. Arithmetic processor is one of the major fields
where we can apply this floating point unit. There we call it floating point processor which does computations
in accordance with the IEEE-754 floating-point standard. Also hardware implementation of this arithmetic unit
is supposed to be done and it is expected that this will significantly accelerate a wide variety of applications.
The presented architecture, however, can be optimized to achieve a faster speed or occupy a smaller area.

Floating Point Representation: IEEE 754 Binary Floating Point is a 32-bit representation (for single
precision, 64 bits are used for double precision) for floating point numerals. The 32-bit representation consists
of three parts. The first bit is used to indicate if the number is positive or negative. The next 8 bits are used to
indicate the exponent of the number, and the last 23 bits are used for the fraction. Converting decimal digits to
IEEE binary floating point is a little tricky. The purpose of this article is to outline a simple method for completing
this conversion.

The first step in the conversion is the simplest. This is determining the first bit. If the decimal digit is
positive then this bit is 0, if the decimal digit is negative then this bit is 1.

The next eight digits are used to express the exponent, which we’ll figure out last. The final 23 digits are
used to express the fraction. This gives you 2723 precision. The first thing to do is convert our decimal digit to
binary, ignoring any positive or negative signs. For instance, if our original number were:

-210.25

We first need to convert 210.25 to binary. It is easiest to focus on the integer part of the number first,
then the decimals. 210is 11010010 or 128+64+16+2, otherwise expressed as:
%217 + 1%216 + 0*215 + 1%2/M + 0*21\3 + 0*2/\2 + 1*2/\1 + 0*210

Next we need to convert the decimal part. To do this we have to convert the number into a binary
sequence that equals a*2* + a*2-2 and so on. This series basically means 1/2 + 1/4 + 1/8 + 1/16 and so on.
Luckily .25 is 1/4 and so this is easy to calculate. Itis .01 or 0*2 + 1*2-2, So our final number is 11010010.01. The
next step is to normalize this number so that only one non zero decimal place is in the number. To do this you
must shift the decimal place 7 positions to the left. The number 7 becomes important so we note it. This process

Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021). 45

leaves us with the number 1.101001001 which is the fraction that is represented in the last 23 bit places in the 32-
bit binary.

However, because of the rules used for conversion the first digit of any number will always be one.
Because we know this number there is no need to represent it. Thus the number we will represent is 101001001.
This is then padded with 0’s to fill in the full 23 bits - leaving us with 10100100100000000000000.

So we now have the first bit, and the last 23 bits of the 32-bit sequence. We must now derive the middle
8 bits. To do this we take our exponent (7) and add 127 (the maximum number you can express with 8 bits (2"8-
1 or the numbers 0 to 127)) which gives us 134. We then express this number as an 8-bit binary. This is 10000110
(or 1*2/7 + 1*272 + 1*271 or 128+4+2). Now we have the middle bits.
Taken as a whole our bit sequence will be:
110000110 10100100100000000000000

We can convert this bit sequence back into a number by reversing the process. First we can note by
the leading 1 that the number is negative. Next we can determine the exponent. 10000110 are binary for 2+4+128
or 134.134-127is 7, so the exponent is 7.

Finally, we take the last 23 digits, convert them back into the original fraction (adding the preceding 1.)
toget: 1.101001001

Moving the decimal place to the right by 7 (corresponding to the exponent) we get:
11010010.01

This binary is equal to 128+64+16+2 + 1/4 or 210.25. Once we apply the negative sign (indicated by the
leading bit set to 1) we get our original number:
-210.25

Formula for converting an IEEE-754 number to decimal :

(1_2*3) * (1+f) * 9 e- bias
Where s: sign value in decimal ,f: mantissa value in decimal, e: exponent value in decimal
bias: bias value 127 (single precision) or 1023 (double precision)

Example IEEE-Decimal conversion :

Let’s find the decimal value of the following IEEE 0 10000000 01100000000000000000000 First the
sign bit s is 0.
The e field contains 210000000 = 128.
The mantissa fis0.011000... =0.375.
Then just plug these decimal values of s, e
Andf intoour formula. (1 —2%s)* (1 +f)* 2 ¢ebiss
This gives us
(1-2*0)* (1 +0.375) * 2128127 = (1.375* 21) =2.75.

Result and Discussion

SIMULATION AND SYNTHESIS REPORT:

1. a=01000000001100000000000000000000

Exponent = 128, sign bit = 0, Final = +2.750000000000 (observed), Comment = {Here We Go!!}
Required= (1-2*0)*(1+0.375)*(2" (128-127))=2.75, Error = 0%

46 Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021).

A signals

exporment

sigri__bit

firval

comment {Here We Go 111}

| »

sim:fconverter final
.

2. a=11000000001100000000000000000000
Exponent = 128, sign bit = 1, Final =-2.750000000000 (observed), Comment = {Here We Go!!!}
Required= (1-2*1)*(1+0.375)*(2" (128-127))=-2.75, Error =0 %

58 signals

—
e 128
i 1
firial 2. Te
comment {Here \Wie Go 11}

b Il‘-'l: [l

sim:fcunver‘ternﬁnai S

3. a=11000000101110000000000000000000
Exponent =129, sign bit= 1, Final = -5.750000000000 (observed), Comment = {Here We Go!!!}
Required= (1-2*1)*(1+0.4375)*(2" (128-129)) = -5.75, Error = 0 %

3 cignals
File Edit VYiew

129

1
-5. 750000000000

{Here We Go HI}

4 I"-I Il

sim:fconverter_final =
—_—

Synthesis Report:
For Converting an IEEE-754 number to decimal

Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021). 47

Device Utilization for 2VP4ff672

Resource Used Avail Utilization
I0s 263 348 7557%
Global Buffers 0 16 0.00%
Function Generator 820 6016 13.63%
CLB Slices 410 3008 13.63%
Dffs or Latches 8 7060 0.11%
Block RAMs 0 28 0.00%
Block Multipliers 2 28 7.14%

Simulation Results:

1. nbitBinary to Decimal Conversion:

2. Inputl
Binaryinput=11111111,11110000, 11100011, 11000110, 00011100 all are 8 bit.
Required Decimal out = 255, 240, 227, 198, 28 all are decimal numbers.
Obtained IEEE 754 out =255, 240, 227, 198, 28 all are decimal numbers.

B wave - default = [= | [T

File Edit Cursor Zoom Format Window
o el & | X Bl | g e o) e . | xR =l [l (xh (9

Y A1 i o000 IR T AO00T 0 JO00T 100 |

|
|
|
|
|
!

0 nsto 2 us

2. Decimal to n bit Binary Conversion: Inputl, Decimal input = 254 is decimal number.
Required Binary out =00000000000000000000000011111110.
Obtained Binary out = 00000000000000000000000011111110.

¥ wave - default [o|[E =]

File Edit Curser Zoom Format Window

a4

65 ns to 528 ns

Input2 : Decimal input = 2256 is decimal number.
Required Binary out =00000000000000000000100011010000.

48 Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021).

Obtained Binary out = 00000000000000000000100011010000.

Bl wave - default (=@l =
File: Edit Cursor Zoom
& | @ b E o Q& | E | EEESN
fdecimal_to_benan/decimal_nput e I
(DS Sdecimal_to_benanps/benan_output

Format Window

784 ns to 1103 ns

1. Decimal to IEEE-754 : (Single precision) Conversion: Inputl

Decimal in =+4.27500
Required IEEE-754 out = 01000000100010001100110011001100
Obtained IEEE-754 out = 01000000100010001100110011001100

= wave - default Vo= i) ikl
Fale Edrt Cuarnor Lo Format W el o
B Bf 1e= e R O W, | (=R | (el ek (e (e
T TS T M e] = 1 1 =
Adecanal 0 seees Sesies ol OV ERO 0T OO0 O OO0 00 500 1007 100 8 OO 1 O O 3 000 0 00
o e 2l . [

0 ne to 9GGH ne

Input2 : Decimal in =-3.12000
Required IEEE 754 out =11000000010001111010111000010100
Obtained IEEE 754 out=11000000010001111010111000010100

s [e =

- wwanee - default
File Edit Cwursor Zoorm Format Window

{mcimal_lo_wsood | [1 1
Sdacimal_to_isesdises_oul T VT O O § o0 G100

i

| |
Sodecimal o e ot |
Sdecinal_to_ e ol 2 i
Soacinal_to_seesd ol 3 v |
Addecimal_to_weedc_2 (W1} i
Adncimal_to_mendird_1 i
Sdacimal_ta_sseasird 3 I | I I 1 | | | 1
Adecimal_to_eaesird_ I 1 1 1 1 I 1
Adecimal_to_eeedind_d ¥ | I | | 1 | i
Fdecimal_to_meedird_S i
Sdecimal_to_ e/ ber_1 |
fedacimal_te_wendmg_1 1
Adecimal_to_ ee/er 1 |
Adecimal o mmesTr_ ot 1
Adecimal_to_ssedmo 2 CO00 T 1107071 100 (10T T i
Sdeoimal_to_esedmeo_1 100017 110101 1108 o0 R R iR i
Adecimal_to_eee/s_1 i

" [| 1 O | |
0 ng 1o 9656 na

.
NI

Subhash Kumar Sharma, etal., JUSPS-A \ol. 33(4), (2021). 49

Device utilization summary: Binary to Decimal for Vertex 2Pro

(Estimated values) Selected Device: 2vp2fg256-6

Logic Utilization Used Available Utilization
Number of bonded IOBs 40 140 28%

Decimal to Binary for Vertex4 (Estimated values)
Selected Device: 4vfx12sf363-11

Logic Utilization Used Available Utilization
Number of Slices 276 6144 4%
Number of 4 inputs LUTSs 497 12288 4%
Number of bonded 10Bs 40 240 16%

Decimal to IEEE-754 for Vertex 4 (Estimated values)
Selected Device: 4vfx12sf363-11

Logic Utilization Used Available Utilization
Number of Slices 4900 6144 79%
Number of Slice Flip Flops 37 12288 0%
Number of 4 inputs LUTSs 7462 12288 60 %
Number of bonded 10Bs % 240 40%
Number of GCLKs 1 K74 3%
Number of DSP48s 18 K74 56%
Conclusions

This paper deals with development of an n-bit binary to decimal conversion, decimal to n bit binary
conversion and decimal to IEEE-754 conversion for floating point arithmetic logic unit (FPALU) using the help
of ModelSim (VHDL) and synthesized with Xilinx tools. We have designed n-bit binary to decimal conversion,
decimal to n bit binary conversion VHDL programs. All programs are on an n-bit format; hence they can be
treated as Universal programs. Normally most of the industries now-a-days are using either 4-bit ALU or 32-bit
ALU, we have generalized it. Hence now we need not to worry about the bit size of ALU. This will solve all the
problems of 4-bit, 8-bit and 16-bit ALU’s and so on. Simulation results of all the designed programs have been
carried out for various inputs with the help of ModelSim tool.

The code we developed to design this converter, conceptually contains something different and
interesting. Floating-point units (FPU) can be implemented in various ways, and the architecture of an FPU has
a great affect on its overall performance, area and power dissipation. Arithmetic processor [10], is one of the
major fields where we can apply this floating point unit. There we call it floating point processor which does
computations in accordance with the IEEE-754 floating-point standard. Also hardware implementation of this
arithmetic unit is supposed to be done and it is expected that this will significantly accelerate a wide variety of
applications. further it can be optimized to achieve a faster speed or occupy a smaller area for the future. The
issue encountered in the VVLSI architectures for finite impulse response (FIR) filter is the increased number of
components, especially delay elements. For the VVLSI architecture reconfigured with reduced register usage,
this article provides the floating point processing element (FPPE) implementation with Cross-Folded Shifting.

50 JUSPS \0ol. 33(4)A, (2021).

The proposed FIR filter system reduces the number of components in the circuit which increases the complexity
and high delay rate in the logical operation. The system has a comparatively reduced delay rate and power
consumption. Hence, an efficient fast architecture based on the FPPE method is developed in this paper.

Acknowledgement

Every success stands as a testimony not only to the hardship but also to hearts behind it. Likewise,
the present work has been undertaken and completed with direct and indirect help from many people, my
friends, My wife ,My elder daughter Dr. Vaishnavi Sharma (MBBS) and I would like to acknowledge all of them
for the same.

Tools Used: Platform: Windows XP, VISTA
Simulator: Model Sim SE, Version 5.5f and 5.5a, Mentor Graphics Company
Synthesizer: Leonardo Spectrum 2003a.33, Mentor Graphics, Inc., Xilinx 6.3i

References

1 *“IEEE Standard for Floating-Point Arithmetic”, in IEEE Std 754-2008, Vol., no., PP.1-70, Aug. 29
(2008).

2. Jain, Jenil, and Rahul Agrawal. “Design And Development of Efficient Reversible Floating Point Arithmetic
unit.” In Communication Systems and Network Technologies (CSNT), 2015 Fifth international Conference
on, PP. 811-815. IEEE, (2015).

3. Gopal, Lenin, Mohd Mahayadin, Nor Syahira, Adib Kabir Chowdhury, Alpha Agape Gopalai, and
Ashutosh Kumar Singh. “Design and synthesis of reversible arithmetic and Logic Unit (ALU).” In
Computer, Communications, and Control Technology (14CT), 2014 International Conference on, PP. 289-
293.IEEE, (2014).

4. 754-2019 - IEEE Standard for Floating-Point Arithmetic IEEE Std 754-2019 (Revision of IEEE
754-2008) Published: (2019).

5 Nachtigal, Michael, Himanshu Thapliyal, and Nagarajan Ranganathan. “Design of a reversible
floating-point adder architecture.” In Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on, PP.
451-456. IEEE, (2011).

6. Kahan, William. “IEEE standard 754 for binary floating-point arithmetic.”Lecture Notes on the Stat us of
IEEE 754.94720-1776 11(1996).

7. IEEE standard 754-2008. IEEE standard for floating-point arithmetic. IEEE Computer Society,
Aug (2008).

8 E.M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw. Decimal Floating-Point Support on the IBM System
710 Processor. J. IBM Res. and Dev., Jan (2009).

9. Xilinx Inc. Xilinx University Program Virtex-11 Pro Development System, Hardware Reference
Manual.

10. IEEE Computer Society (2019-07-22). IEEE Standard for Floating-Point Arithmetic. IEEE STD
754-2019. IEEE. PP. 1-84. doi:10.1109/IEEESTD.2019.8766229. ISBN 978-1-5044-5924-2. IEEE Std 754-2019.

11. ISO/IEC 60559:2020 Information technology Microprocessor Systems Floating-Point arithmetic.
Iso.org. May 2020. PP. 1-74.

