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Abstract

Constraint programming has roots in logic programming, where a model has both a declarative and a
procedural interpretation. A model is declarative because its statements can be read as logical propositions that
describe the problem, and it is procedural because the statements can be processed as instructions for how to
find a solution. To make constraint programming material to practical problems one needs propagation algorithms
that are both viable and proficient. The most incredible propagation algorithm for the alldifferent constraint, i.e.
the one getting hyper-circular segment consistency, is to be sure extremely productive. The reason is that we
can apply matching hypothesis from operations research. Likewise for the symmetric alldifferent constraint and
the weighted alldifferent constraint powerful and effective propagation algorithms exist, again dependent on
techniques from operations research. From this paper we show that some time alldifferent constraint is more
easy way to solve the MIP. For this we will choose an auction strategy by which a company get more revenue.
Despite this considerable progress, there remains great potential for further integration, with the concomitant
improvement in both modeling and solution method.
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Introduction

The field of constraint programming is

moderately new; the primary global workshop on
“Standards and Practice of Constraint
Programming” was held in 1993, while it turned
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into a gathering in 1995. The essential ideas of constraint thinking were developed in the field of man-
made brainpower during the 1970s. Further development occurred after the presentation of constraints
in logic programming during the 1980s. In spite of the fact that Operations Research (OR) and
Constraint Programming (CP) have diverse roots, the connections between the two communities
have become more grounded as of late. For tackling combinatorial improvement problems, the
techniques of CP as well as will turn out to be interdependent to the point that the two research
communities could inevitably blend. Constraint programming and Operation research have the same
overall goal. They strive to capture a real -world situation in a mathematical model and solve it
efficiently. Both fields use constraints to build the model, often in conjunction with an objective function
to evaluate solutions. It is therefore only natural that the two fields join forces to solve problems.

Operation research is strongly influenced by its historical roots in linear programming, which
formulates problems using inequality constraints. Much of the field today is based on inequality-
constrained mathematical programming model, including those of nonlinear programming (NLP), mixed
integer/linear programming (MILP), and mixed integer/nonlinear programming.

Constraint programming has roots in logic programming, where a model has both a declarative
and a procedural interpretation. A model is declarative because its statements can be read as logical
propositions that describe the problem, and it is procedural because the statements can be processed
as instructions for how to find a solution. Something similar to this dual interpretation survives in
today’s CP. In the context of constraint programming, decision diagrams provide a generic tool of
modeling and propagation constraints and conjunction constraints1,2,3,4 in context of integer programming,
recent examples include the use of decision diagram for generating cutting planes and for representing
nonlinear objective function5.

The aim of present work is to give the idea is how to solve the MIP by using alldifferent
constraint.

Constraint programming and constraint satisfaction :

Constraint programming can be imagined by and large as the implanting of constraints inside
a programming dialect. This mix of decisive and procedural modeling gives the client some power
over how the problem is comprehended, even while holding the capacity to state constraints definitively.

It a long way from evident how definitive and procedural plans might be consolidated. In a
procedural code, for instance, usually to dole out a variable diverse quality at different focuses in the
code. This is rubbish in a definitive detailing, since it is conflicting to state constraints that allot a
similar variable diverse quality. The developments that offered ascend to constraint programming can
in substantial part be viewed as endeavors to address this problem. They started with logic programming
and prompted various elective approaches, for example, constraint taking care of tenets, simultaneous
constraint programming, constraint logic programming, and constraint programming. Constraint
programming “toolboxes” speak to a to some degree more procedural variant of constraint logic
programming and are maybe the most broadly utilized option.
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Operations research methods in constraint programming :

Various operations research (OR) methods have discovered their way into constraint
programming (CP). This development is totally normal, since OR and CP have comparative objectives.
Or then again is basically a minor departure from the scientific routine with regards to mathematical
modeling. It depicts wonders in a formal dialect that enables one to derive outcomes thoroughly. In
contrast to a run of the mill scientific model, be that as it may, anOR model has a prescriptive and in
addition a spellbinding reason. It speaks to a human movement with some opportunity of decision, as
opposed to a characteristic procedure. The laws of nature move toward becoming constraints that the
action must watch, and the objective is to amplify some objective subject to the constraints.

CP’s constraint-situated approach to problem tackling represents a prescriptive modeling
undertaking fundamentally the same as that of OR. CP truly has been less worried about finding ideal
than achievable solutions; however, this is a shallow contrast. It is not out of the ordinary, in this way,
that OR methods would discover application in understanding CP models.

There remains a major distinction, be that as it may, in the way that CP as well as comprehend
constraints. CP regularly observes a constraint as a strategy, or if nothing else as summoning a
methodology, that works on the solution space, typically by diminishing variable domains. Or on the
other hand observes a constraint set overall fabric; the solution algorithm works on the whole problem
instead of the constraints in it. The two approaches have their points of interest. CP can configuration
specific algorithms for individual constraints or subsets of constraints, consequently misusing substructure
in the problem that OR methods are probably going to miss. Or then again algorithms, then again, can
misuse worldwide properties of the problem that CP can just mostly catch by propagation through
factor domains.

Constraint propagation were foreshadowed in the OR literature as early as the 1960s, when
Garfinkel and Nemhauser6 used a technique then known as implicit enumeration to solve integer
programming model of political districting and other problems. this was before relaxation methods
developed in OR, and it was necessary to reduce branching in some other way. the OR literature
explicitly mentioned CP as early as 1989 7, while true integration began in the 1990s. OR took an early
step away from inequality-based modeling in1990, when Beaumont9 replaced integer variables with
logical disjunctions and solved the problem by branching on disjunction. after an early allocation to
processing networks in9, Hooker and Osorio10 extended this approach to “mixed logical/linear
programming”. Meanwhile, the integration of propagation and relaxation in branch-and-cut methods
was advocated by Hooker in1994 11 and further explored in a number of publications, such as12,13.
The CP community also pursued integrated methods during the 1990s, primarily by exchanging
information between CP an LP solver, as advocated by Little and Darby- Dowman14.

Mixed integer/linear modeling :

A mixed integer/linear programming (MILP) problem is a LP problem with the additional



confinement that specific factors must take integer esteems. It is an (unadulterated) integer/linear
programming (ILP) problem when every one of the factors are integer-esteemed, and a 0-1 linear
programming problem when every one of the factors have domain {0,1}.

MILP problems are tackled by a branch-and-bound search mechanism. A LP relaxation of
the problem is illuminated at every hub of a search tree. On the off chance that the ideal estimation of
the relaxation is more prominent than or equivalent to the estimation of the best applicant solution
found up until this point. the search backtracks. Something else, in the event that all factors in the LP
solution are indispensable, it becomes a competitor solution. On the off chance that at least one
factors are nonintegral, the search branches on one of the nonintegral factors by part its domain.
Cutting planes are ordinarily included at the root hub and potentially at different hubs, bringing about
a branch-and-cut method.

In spite of the fact that MILP problems are commonly a lot harder to take care of that LP
problems, the solution innovation has been the subject of serious development for no less than three
decades. Business solvers have accomplished requests of-greatness speedups through the privilege
com-bination of cutting planes, branching heuristics, and preprocessing.

The essential job of MILP in CP, be that as it may, is to give a LP relaxation of a constraint or
subset of constraints. One formulates a MILP model and drops the integrality condition. MILP is an
exceptionally flexible modeling dialect in the event that one is adequately brilliant. Composing a model
with a “decent” LP relaxation, be that as it may, is frequently more a craftsmanship than a science. A
decent relaxation is for the most part seen as one whose ideal esteem is near that of the MILP
problem.

Operation research besed filtering model (Alldifferent constraint) :

Operation Research methods have made major contributions to domain filtering for global
constraints in CP.  important example is alldifferent constraint. The alldifferent constraint first appeared
in 1978 15. Filtering algorithem that achieve domain consistency for alldifferent were derived in the
early 1990s using results from matching theory in the OR literature16,17,18,19, which is in turn based on
classical network flow theory.

Definition (Alldifferent constraint). Let   ࢞૚, ࢞૛,….,࢞࢔    be variables
with respective finite domains 1ܦ, ݊ܦ,………,2ܦ     Then

1ݔ)ݐ݊݁ݎ݂݂݈݈݁݅݀ܽ , … . . , (݊ݔ = ൛(݀1 , … . . ݀݊ ) |  ݀1 ∈ ݅ܦ , ݀݅ ≠ ݆݀ ݅ ݎ݋݂  ≠ ݆ൟ 

Definition (Value graph).: Let   ࢄ = ࢞૚, ࢞૛, … … be a sequence of variables  ࢔࢞,

with respective finite domains  ࡰ૚, ,૛ࡰ … . . ࡳ The bipartite graph . ࢔ࡰ, = ∪ࢄ) ,ࢄࡰ  (ࡱ

with ࡱ = ࢊ | ࢊ࢏࢞} ∈ .is called the value graph of X   {࢏ࡰ
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Theorem.1 Let ࢄ = ࢞૚, ࢞૛, … … be a sequence of variables with re­spective finite  ࢔࢞,
domains ࡰ૚, ,૛ࡰ … . . Let G be the value graph of X. Then  ࢔ࡰ,

,૚ࢊ)  ,૛ࢊ … . . , (࢔ࢊ ∈ ,૚࢞) ݐ݊݁ݎ݂݂݈݈݁݅݀ܽ … . . , ܯ if and only if  (࢔࢞ = ൛1݀1ݔ, … . . , ݊݀݊ݔ ൟ 
is a matching in G.

Proof. An edge xi, di (for some ݅ ∈ {1, … … , ݊} ) in M corresponds to the assignment xi= di

As no edges in M share a vertex, xi  xj   for all  i  j

Note that the matching M in Theorem 1 covers X , and is therefore a maximum-size matching.

Example : We want to assign four tasks (1, 2, 3 and 4) to five machines (A, B, C, D and E).
To each machine at most one task can be assigned. However, not every task can be assigned to every
machine. Table 1 below presents the possible combinations. For example, task 2 can be assigned to
machines B and C.

Table 1. Possible task - machine combinations.

Fig. 1. The value graph for the task assignment problem of Example1.
Bold edges form a matching covering all tasks.

This problem is modelled as follows. We introduce a variable  for task . whose value represents
the machine to which task is assigned. The initial domains of the variables are defined by the possible
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combinations in Table 1. Since the tasks have to be assigned to different machines, we introduce an
alldifferent constraint. The problem is thus modelled as the CSP.

1ݔ  ∈ ,{ܧ,ܦ,ܥ,ܤ} 2ݔ ∈ ,{ܥ,ܤ} 3ݔ ∈ ,ܤ,ܣ} ,ܥ ,{ܦ 4ݔ ∈  {ܥ,ܤ}
,1ݔ)࢚࢔ࢋ࢘ࢋࢌࢌ࢏ࢊ࢒࢒ࢇ ,2ݔ ,3ݔ  .(4ݔ

Application of LPP model and solution by alldifferent constraint :

There are five parties ܺ1, ܺ2 , ܺ3 , ܺ4 , ܺ5 they want to bid on 4 item A, B, C, D. The party X1

have 10 crore and it is interested to bid on A, B. Party X2 have 20 cr. And it is interested to bid on A,
C. Party X3 have 30 cr. And it is interested to bid on BD. Party X4 have 40 crores to bid on BCD.
Party X5 have 14 crores to bid on A. We wish to sell 4 items (maximize revenue), given these 4 bids.
One thing should remember that if any party bids on more than one item then bid amount must be
divided equally for each biding item.

Table 2.
ITEM BID AMOUNT MIP VARIABLE
A, B 10 X1

A, C 20 X2

B, D 30 X3

B, C, D 40 X4

A 14 X5

Then lpp of following bid

ܼ ݔܽܯ                                                     = 10 1ܺ + 20ܺ2 + 30ܺ3 + 40ܺ4 + 14ܺ5 
St.   1ܺ + ܺ2 + ܺ5 ≤ 1 

       ܺ1 + ܺ3 + ܺ4 ≤ 1

        ܺ2 +ܺ4 ≤ 1 

       ܺ3 +ܺ4 ≤ 1 
 ܺ1, ܺ2 , ܺ3 , ܺ4 , ܺ5  are binary

To apply branch and bound method, the following 5 constraints have to be added to the LP model,

1ܺ ≤ 1 

ܺ ≤ 1
ܺ2 ≤ 1 
ܺ3 ≤ 1 
ܺ4 ≤ 1 
ܺ5 ≤ 1 

We can write the solution step by Big M method

Akash Pandey et al., JUSPS-A  Vol. 35(2), (2023). 17



ܼ ݔܽܯ = 10 1ܺ + 20ܺ2 + 30ܺ3 + 40ܺ4 + 14ܺ5

1ܺ + ܺ2 + ܺ5 ≤ 1 

1ܺ + ܺ3 + ܺ4 ≤ 1

         ܺ2 + ܺ4 ≤ 1 

        ܺ3 + ܺ4 ≤ 1 

                    1ܺ ≤ 1 

                   ܺ2 ≤ 1 

                   ܺ3 ≤ 1 

                  ܺ4 ≤ 1

                 ܺ5 ≤ 1 

And  1ܺ, ܺ2, ܺ3, ܺ4 , ܺ5 ≥ 0
The solution of above is  ܣܼݔܽܯ = 54( 1ܺ = 0,ܺ2 = 0,ܺ3 = 0,ܺ4 = 1,ܺ5 = 1) 
                                     and ܼܮ = 54( 1ܺ = 0,ܺ2 = 0,ܺ3 = 0,ܺ4 = 1,ܺ5 = 1) obtain by the
rounded off solution values. This problem has integer solution so no further branching is required. The
branch and bound diagram

1ܺ = 0        ܺ2 = 0     ܺ3 = 0      ܺ4 = 0    ܺ5 = 0 
ܣܼ = 54 
ܮܼ = 54 

       Solution step by Big M method

The following lpp can be written in following constrain programming
Data Structures

 Domain types (Integer, Real)
 Domain implementation Constraint Propagation

 AllDifferent Variables must be assigned distinct value

1ܺ  ∈  {A, B} 

 ܺ2  ∈  {A, C} 

ܺ3  ∈  {B, D} 

        ܺ4  ∈  {    B, C, D  } 

            ܺ5 ∈    { A } 
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variables

Items

Fig 2. The value graph for the task assignment of item to the bidder (variable).
Bold edges form a matching covering

Variable 1ܺ         ,     ܺ2,         ܺ3,             ܺ4                ܺ5 
Domain  5ܦ                   4ܦ              3ܦ            2ܦ                1ܦ 

,ܣ) ,ܣ)         (ܤ ,ܤ)      (ܦ,ܤ)     (ܥ ,ܦ  (ܣ)        (ܥ

The constraint satisfaction can be written as:

൫)1ܥ 1ܺ , ܺ5)                                       (ܺ5 = ܣ ≠ 1ܺ)൯
,2൫(ܺ2ܥ ܺ3, ܺ4)                 (ܺ4 = ,ܤ ܦ,ܥ ≠ ܺ2 ≠ ܺ3)൯ 

It is clear that the value graph of X= X= 1ܺ , ܺ2, ܺ3 , ܺ4 , ܺ5   in presented in fig. The bold edge in the
value graph denoted a matching covering X. It corresponds to a solution to the CSP

i.e., ܺ4 = 5ܺ   ܦ,ܥ,ܤ =  ܣ
this shows that party X4 will get item B, C, D at the bid amount 40cr and party X5 will get item A at the
bid amount 14 cr.
Thus, we saw that by selling these 4 items by biding we get total revenue 54 crore.

Conclusion

An imperative perception is the accompanying. To make constraint programming material to
practical problems one needs propagation algorithms that are both viable and proficient. The most
incredible propagation algorithm for the alldifferent constraint, i.e. the one getting hyper-circular segment
consistency, is to be sure extremely productive. The reason is that we can apply matching hypothesis
from operations research. Likewise for the symmetric alldifferent constraint and the weighted
alldifferent constraint powerful and effective propagation algorithms exist, again dependent on
techniques from operations research.

ܦ                    ܥ                ܤ                   ܣ
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In this paper, it is presented that determines optimum bids in a competitive-bidding situation
where each competitor submits one closed bid. the number of bidders may be large or may be unknown.

Competitive bidding is a common procurement practice that involves inviting multiple vendors
or service provider to submit offer for any particular material or services. Competitive bidding allows
transparency, equality of opportunity and the ability to demonstrate that the outcomes represent the
best value hence, high value acquisitions usually undergo the competitive bidding process.

From this paper we show that some time alldifferent constraint is more easy way to solve the
MIP. For this we will choose an auction strategy by which a company get more revenue. Despite this
considerable progress, there remains great potential for further integration, with the concomitant
improvement in both modeling and solution method.

scope of future work:

This research can be extended in the future by considering additional parameters and constraints
related to the real world. This will lead to developing a mathematical model for nonlinear integrated
production planning and scheduling problem, imple- menting the developed model on a real-world
problem, and then solving the actual industrial problem with the suitable multi- objective
optimization method.

References

1. David Bergman, Andre A. Cire (2018) Discrete Nonlinear Optimization by State-Space
Decompositions. Management Science 64(10): 4700-4720.

2. Hoda, S., van Hoeve, W.J., Hooker, J.N.; A systematic approach to MDD-based constraint
programming. In: Proceedings of the 16th International Conference on Principles and Practices
of Constraint Programming, Lecture Notes in Computer Science, Springer (2010).

3. Perez, G., Regin, J.C.; Efficient Operations on MDDs for Building Constraint Programming Models
In: Proceedings of IJCAI, pp. 374-380 (2015).

4. Perez, G., Regin, J.C.; MDDs are Efficient Modeling Tool: An Application to Some Statistical
Constraints. CPAIOR, LNCS Vol 10335, pp 30-40. Springer (2017).

5. Begman , D., Cire, A.A., van Hoeve,W.J.: Lagrangian bounds from decision diagrams. Constraints
20, 346-361 (2015).

6. Garfinkel, R., Nemhauser, G.L.: Optimal political districting by implicit enumeration techniques.
Management Science 16, B495-B508 (1970).

7. Brown, R.G., Chinneck, J.W., Karam G.M.: Optimization with constraint programming systems.
in: R.S. et al.(ed.) Impact of Recent Computer Advances on Operations Research, Publications
in Operations Research Series,Vol. 9, pp.463-473. Elsevier, Williamsburg, VA (1989).

8. Beaumont, N.: An algorithm for disjunctive programs. European Journal of Operational Research
48, 362-371 (1990).

9. Grossmann, I.E., Hooker, J.N., Raman, R., Yan, H.: Logic cuts for processing networks with
fixed charges. Computers and Operations Research 21, 265-279 (1994).

20 Akash Pandey et al., JUSPS-A  Vol. 35(2), (2023).



10. Hooker, J.N., Osorio, M.A.: Mixed logical/linear programming. Discrete Applied Mathematics
96-97, 395-442 (1999).

11. Hooker J.N.: Logic -based methods for optimization. In: A. Borning (ed.) Principles and Practice
of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 874, pp336-
349. Springer (1994).

12. Bockmayr, A., Kasper, T.: Branch-and-infer: A unifying framework for integer and finite domain
constraint programming. INFORMS Journal on Computing 10, 287-300 (1998).

13. Hooker J.N.: Logic -based methods for optimization: Combining Optimization and Constraint
Satisfaction. Wiley, New York (2000).

14. Little, J., Darby-Dowman, K.: The significance of constraint logic programming to operational
research. In: M. Lawrence, C. Wilsden(eds.) Operational Research Tutorial Papers (Invited
tutorial paper to the Operational Research Society Conference, 1995 pp. 20-45 (1995).

15. Lauriere, J.L.: A language and a program for stating and solving combinatorial problem. Artificial
Intelligence 10, 29-127 (1978).

16. Costa, M.C.: Persistency in maximum cardinality bipartite matchings. Operations Research Letters
15, 143-149 (1994).

17. Lovasz, L., Plummer, M.: Matching Theory, Annals of discrete Mathematics, vol. 29. North-
Holland (1986).

18. Hopcroft, J.E., Karp, R.M,: A n5/2 algorithm for maximum matching in bipartite graph. SIAM
Journal on Computing 2, 225-231 (1973).

19. Pandey A, Sharma S.S, Gupta U.K,: An approach to operation research techniques and constraint
programming, IJIRT Vol. 8, pp. 525-535 (2021).

JUSPS Vol. 35(2)A, (2023). 21


