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Abstract

The nature of the differential equation for steady compressible flow is different for subsonic and
supersonic flows. For subsonic flow the equation, the equation is of hyperbolic type. In this case the simple
wave equation linearised theory. The exact differential equation for the steady flow of a compressible fluid as
the same nature as that of linearised theory for steady subsonic flow, the differential equation of the elliptic type
and for the steady supersonic flow, the differential equation is of the hyperbolic type. The general theory of the
method of characteristics for the case of two independent variables is particularly easy to visualize and
computation methods for this case need to be studied extensively. In this paper we discussed some basic
properties of irrational flows and boundary conditions that occur in aeronautical engineering problems.
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Nomenclature:
߰ = Scalar function of x,y y = Partial derivative  w.r.t.  y
u = Velocity along x direction = ݔ̇  Partial derivative ߦ  w.r.t.  x
v = Velocity along y direction = ݕ̇  Partial derivative ߦ  w.r.t. y
߰ x = Partial derivative ߰  w.r.t.  x  a = Speed of the sound
߰ y = Partial derivative ߰  w.r.t.  y   = ratio of specific heats (=ܿݑܿ/݌) 
x = Partial derivative  w.r.t.  x  M = Mach number
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1  Introduction

It is extremely difficult to find an exact solution for compressible flow problems1,2, therefore
we need to have approximate methods. Linearisation by the method of small perturbations have been
extensively used because of the frequent interest in the flow around these bodies some times this
method of linearisation fails for both the transonic and hypersonic regions. Vanarman was the first to
obtain the similarity laws for transonic10 flows where the fluid velocity is very near to the velocity of
sound Tsien was the first to obtain the similarity laws for hypersonic flow4 where the fluid velocity is
much higher than the local velocity of the sound velocity. Some problems of hypersonic flows, supersonic
and transonic flow6 need to be studied. In many engineering problems we are interested in the flow
around thin body is a uniform stream. In this case we may Linearise some fundamental equation7.
The boundary conditions occurring in the elliptic equations are difficult from these in the hypersonic
equation. For elliptic equations, the problem is to find a function throughout a field where it’s value and
that of it’s normal derivative are given over a portion but not all of a boundary excluding the field7

which is called Cauchy’s problem.

2  Theory of characteristics for a differential equation of two independent variables. Let the
function  of the independent variables  and  satisfy the quasi-linear differential equation:

Let the function ߰  of the independent variables x and y satisfy the quasi-linear differential
equation

ݔݔ߰ܣ + ݕݔ߰ܤ + ݕݕ߰ܥ + ܦ = 0 (1)
where the subscript denotes partial differentiation; A, B, C, and D are functions of ݔ, ݔݔ߰,ݕ ݕݔ߰ ,
and ߰ݕݕ . 1 is called quasi-linear because it is linear in the derivative of the highest order, i.e., the
second-order derivatives. In the gas-dynamics of in-viscid flow, the differential equations are all of
this type, e.g., equations (5.50) and (5.35).

Let
,ݔ)ߟ (ݕ = (2) ݐ݊ܽݐݏ݊݋ܿ

be the equation of the characteristic curves of the equation 1. Let the family of the characteristic
curves 2 be intersected by a second family of curves

,ݔ)ߦ (ݕ = (3) ݐ݊ܽݐݏ݊݋ܿ

No further specifications are necessary concerning this second family of curves, but in the
case of hyperbolic equation, it may be chosen as the second family of characteristics.

We define the interior derivative as the derivative of a function with respect to ߦ  taken along
 = constant, and the exterior derivative as the derivative of a function with respect to . Thus for
exterior derivatives, information concerning the variation of the function beyond = constant is
required.
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We may introduce the characteristics in the following three different ways:
1.  The characteristic curves can be considered as the loci of possible small discontinuities.
2.  The characteristics are the only curves from which an integral surface can be constructed.
3.  The continuation of an integral surface beyond a characteristic may become indeterminate.

We shall discuss the characteristics from the above three different ways in the following. All
give the same result.
1. Characteristics as loci of discontinuities of second order: This is a most natural way for the
aerodynamicist to introduce the characteristics of aerodynamic equations. In this case, the
characteristics for the supersonic steady flow are the Mach lines along which small disturbances or
discontinuities are propagated from the boundary into the interior of the flow field.

Now we assume that there is a discontinuity only in the exterior derivative of the first derivative
of the function ߰  of equation 1. Then only ߰ߟߟ  is discontinuous across  = constant. Since there is a
jump [߰ߟߟ ] in ߰ߟߟ  across = constant, the jumps in ߰ݔݔ ݕݔ߰ ,  and ߰ݕݕ  across = constant are then
respectively a characteristic curve

ݔݔ߰] ] = ߟߟ߰ൣ ൧2ݔߟ ݕݔ߰ൣ , ൧ = ߟߟ߰ൣ ൧ݕߟݔߟ ݕݕ߰ൣ , ൧ = ߟߟ߰ൣ ൧2ݕߟ  (4)

because  ߰ݔݔ = ߟߟ߰ 2ݔߟ + ݊ߦ߰ ݔߟݔߦ + ߦߦ߰ 2ݔߦ + ݔݔߟߟ߰ + .etc ,ݔݔߦݔ߰

If now the differential equation 1 is written for a fixed value of and small positive (+∇ߟ ) and
negative values (−∇ߟ ) of  different from  = 0 characteristics (for simplicity, we may consider the
characteristic  = 0 from here on), we obtain by subtraction

ݔݔ߰]ܣ ] + ݕݔ߰ൣܤ ൧ + ݕݕ߰ൣܥ ൧ = 0 
or

2ݔߟܣ     + ݕߟݔߟܤ + 2ݕߟܥ = 0 (5)
Equation 5 is the characteristic condition. If we represent = constant in parametric from

ݔ       = ݕ           ,(ߦ)ݔ = (ߦ)ݕ (6)
then

   
ݔߟ
ݕߟ

= −
ݕ̇
 ݔ̇

where the dot denotes the derivative with respect to ߦ .

Figure 1: Characteristic curve of a differe4ntial equation



Equation 1 becomes
2ݕ̇ܣ     − ݕ̇ݔ̇ܤ + 2ݔ̇ܥ (7)

or

൬ܣ
ݕ݀
൰ݔ݀

2

− ܤ
ݕ݀
ݔ݀ + ܥ = 0 

Equations 7 is known as the characteristics equation which give the following two families of
characteristic:

 ൬
ݕ݀
൰1,2ݔ݀

=
ܤ ± 2ܤ√ − ܥܣ4

ܣ2  (8)

from the values of the functions A, B, and C of equation, we have the classification criteria:

2ܤ  − Type of equation ܥܣ4  Characteristic Curves
      > 0 Hyperbolic  Two real families
      < 0 Elliptic  Two imaginary families
      = 0 Parabolic  One real family

Since the funotions A, B, C are, in general, variables which take different values in different
parts of the field, equation (1) may be of hyperbolic type in a certain region, elliptic in the other, and
parabolic in still others. In general, equation (1) is of mixed type.

For example, let us consider the steady two-dimensional flow of compressible inviscid fluid.
Here we have

ܣ = ܽ2 − 2ݑ ܤ         , = ܥ           ,ݒݑ2− = ܽ2 − 2ݒ  (9)
Hence

2ܤ − ܥܣ4 = 2ܯ)4ܽ2 − 1) (10)

where M is the local Mach number, ie. ܯ = ඥ2ݑ + ,We see that for supersonic flow M > 1 . ܽ/2ݒ
equation (1) is of hyperbolic type; for subsonic flow M < 1, equation (9) is of elliptic type; and for
sonic flow M = 1, equation (9) is of parabolic type. In general, equation (9) is of mixed type. It is also
of interest to note that the characteristics for the rotational flow are the same as those for the
corresponding irrotational flow equation (10). The only difference in equations (9) and (10) is in D
which does not affect the characteristic equation.

From the values of equation (9), we have for supersonic flow M> 1, the following two families
of characteristics:

൬
ݕ݀
൰1,2ݔ݀

=
ݒݑ− ± 2ݑ√ + 2ݒ − ܽ2

ܽ2 − 2ݑ  (11)

where is the angle of the velocity vector to the x-axis and is known as the Mach angle, i.e.,
ߙ = Equation (11) shows that the angle between the characteristic curves and the (ܯ/1)1−݊݅ݏ
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streamlines is the Mach angle. Hence the characteristics are the Mach lines in the steady two
dimensional supersonic flow.

2. Characteristic strips as elements of integral surfaces : Let us consider a strip C on the surface
of ߰   which is associated with a curve = 0, and which is defined parametrically by (ߦ)ݔ, ,(ߦ)ݕ ,ߦ)߰ 0)
= ,(ߦ)߰ ,ߦ)ߦ߰ 0) = ,ߦ)ߦ߰ and  (ߦ)݌ 0) = We want to find the conditions under which the  . (ߦ)ݍ
expression on the left-hand side of equation (1),

ݔݔ߰ܣ + ݕݔ߰ܤ + ݕݕ߰ܥ + ܦ (12)

can be expressed in terms of the five strip quantities (ߦ)ݔ, ,(ߦ)ݕ ,(ߦ)߰ and their  (ߦ)ݍ and ,(ߦ)݌
internal derivatives. Since the coefficients A, B, C, and D depend only on the quantities ݔ, ,߰,ݕ ,ߦ߰
and ߰ߟ, which are given along the considered strip, we need to investigate only whether  and  can be
expressed in terms of these five strip quantities and their internal derivatives.

From equation (4). We see that if
2ݔߟܣ + ݕߟݔߟܤ + 2ݕߟܥ = 0 (13)

equation (12) can be expressed in terms of these five quantities and their internal derivatives. Equation
(13) is the characteristic condition (5). Only characteristic strips can be considered for the construction
of an integral surface from the strips. Of course, that such a construction is indeed possible must be
proved.

3. Indeterminate continuation of an integral surface beyond a characteristic strip:

The third definition of characteristics is obtained from the consideration of a strip of the first
order on the integral surface ߰ . We want to know whether the unknown second derivatives
ݔݔ߰ , ݕݔ߰ ݕݕ߰ ,  and the higher derivatives along the strip of the first order can always be uniquely
determined from the differential equation (1). If they could be determined, the function ߰  might be
continued beyond the strip by means of a Taylor series development.

The second derivatives ݎ, and t can be determined from the following three simultaneous  ݏ
equations:

ݔݔ߰ܣ + ݕݔ߰ܤ + ݕݕ߰ܥ =  ܦ−
ݔݔ߰ݔ̇ + ݕݔ߰ݕ̇ = ݔ߰  (14)

ݕݔ߰ݔ̇ + ݕݕ߰ݕ̇ = ݕ߰  

(where the dot denotes differentiation with respect to ߦ ), provided that the determinant

อ
ܣ ܤ ܥ
ݔ̇ ݕ̇ 0
0 ݔ̇ ݕ̇

อ = 2ݕ̇ܣ − ݕ̇ݔ̇ܤ + (15) 2ݔ̇ܥ

does not vanish. It is interesting to note that the higher derivatives, too, can be uniquely determined
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under the same condition (15).
If the determinant vanishes, i.e., if the characteristic condition (7) is satisfied, the derivatives

,ݎ and t are determined, if at all, only within the solution of the homogeneous system of equations  ݏ
which corresponds to equation (14). If the characteristic condition is satisfied, equation (14) admits a
solution if the following

ቮ
ܣ ܤ ܥ
ݔ̇ 0 ݔ̇߰
0 ݕ̇ ݕ̇߰

ቮ = ݔ̇߰ܣ ݕ̇ − ݕ̇߰ݔ̇ܤ + ݕ̇ݔ̇ܥ = 0 (16)

is also satisfied. This gives the second characteristic differential equation.

The third characteristic equation is

߰̇ = ݔ߰ ݔ̇ + ݕ߰ (17) ݕ̇
Equations (7), (16), and (17) are the fundamental differential equations for the characteristic

method as applied to the hyperbolic type differential equation. We shall discuss the approximate
solution of these equations for flow problems later.

3  Theory of characteristics for two simultaneous first-order differential equations in two
variables :

Let us consider the following system of quasi-linear, first-order differential equations in two
independent and two dependent variables:

1ܣ
ݑ߲
ݔ߲ + 1ܤ

ݑ߲
ݕ߲ + 1ܥ

ݒ߲
ݔ߲ + 1ܦ

ݒ߲
ݕ߲ + 1ܧ = 0 (18)

2ܣ
ݑ߲
ݔ߲

+ 2ܤ
ݑ߲
ݕ߲

+ 2ܥ
ݒ߲
ݔ߲

+ 2ܦ
ݒ߲
ݕ߲

+ 2ܧ = 0 

where 1ܣ, 2ܣ , ,are functions of x, y, u and v  2ܧ ,⋯

If the functions 1ܣ, 2ܣ , are functions of the independent variables x and y but not of  , 2ܧ ,⋯
the dependent variables u and v, the equations are linear.

In general, the equation (18) is nonlinear. We say it is quasi-linear because it is linear with
respect to the first derivatives of u and v. If the equations are homogeneous, ie, 1ܧ = 2ܧ = 0, , and if
the other coefficients are functions of u, v but not of x,y explicitly, the equation (18) is said to be
reducible and can be transformed into a linear system by interchanging the roles of the independent
and dependent variables.

The fundamental equations of the compressible fluid for many cases may be reduced to the
form of equation (18). For instance, the fundamental equations for steady irrotational two-dimensional
or axially symmetrical flow may be written in the form of equation (11.18) as follows:

2ݑ) − ܽ2)
ݑ߲
ݔ߲

+ ݒݑ ൬
ݑ߲
ݕ߲

+
ݒ߲
ݔ߲
൰ + 2ݒ) − ܽ2)

ݒ߲
ݕ߲

− ߜ
ݒ2ܽ
ݕ

= 0 (19)
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ݒ߲
ݔ߲

−
ݑ߲
ݕ߲

= 0 

where ߜ = 0  for two-dimensional flow, ߜ = 1  for axially symmetrical flow, and y is the radial
distance in axially symmetrical case. The sound speed a is a given function of the velocity 2ݑ + ,2ݒ
ie,

ܽ2 = ܽ0
2 −

ߛ − 1
2

2ݑ) + (2ݒ (20)
From equation (19), we see that for the two-dimensional case, the equations are reducible

and that for the axially symmetrical case , they are not reducible.
Now we consider the characteristics of equation (11.18) in the same manner as that described

in $ 2(3), i.e., we consider the continuation of the functions u and y beyond a characteristic.

Let us assume that along a certain curve  : ݔ = ݕ and (ߦ)ݔ = the values of the ,(ߦ)ݕ
functions u and v are given. If we can calculate the first derivatives and higher derivatives from
equation (18) and the values of u and v on the curve . the functions u and v might be continued
beyond the curve by means of a Taylor series development.

The equations from which we can determine the four first derivatives ux, uy, vx, and vy are as
follows:

ݔݑ1ܣ + ݕݑ1ܤ + ݔݒ1ܥ + ݕݒ1ܦ =  1ܧ−

ݔݑ2ܣ + ݕݑ2ܤ + ݔݒ2ܥ + ݕݒ2ܦ = (21) 2ܧ−

ݔݑݔ̇ + ݕݑݕ̇ =  ݑ̇

ݔݒݔ̇ + ݕݒݕ̇ =  ݒ̇
We can determine ux, etc., from equation (21) uniquely except when

ተ

1ܣ 1ܤ 1ܥ 1ܦ
2ܣ 2ܤ 2ܥ 2ܦ
ݔ̇ ݕ̇ 0 0
0 0 ݔ̇ ݕ̇

ተ =
2ܦ1ܤ) − 2(ݔ݀)(2ܤ1ܦ

2ܦ1ܣ)]− − (1ܦ2ܣ + 2ܥ1ܤ) − [(2ܤ1ܥ
2ܥ1ܣ)+ − 2(ݕ݀)(2ܣ1ܥ

ݕ݀ݔ݀ = 0 (22)

Equation (22) is the equation of the characteristics. The solution of equation (22) gives two families of
characteristics curves

൬
ݑ߲
ݕ߲
൰

1
= ,ݔ)′ܥ ,ݕ ,ݑ (23) (ݒ

൬
ݑ߲
൰2ݕ߲

= ,ݔ)′′ܥ ,ݕ ,ݑ  (ݒ

These two families of characteristics depend explicitly on the coefficients 1ܣ , ⋯ , of ,2ܦ
equation (18). For instant, for two-dimensional irrotational steady flow of compressible fluid, they are
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the same characteristics as those given by equation (11).

Along these characteristics, the normal derivatives of u and v are indeterminate and may be
discontinuous.

In a manner similar to the case discussed in 1(3), the second condition for characteristics may
be written as

ተ

1ܤ 1ܥ 1ܦ 1ܧ
2ܤ 2ܥ 2ܦ 2ܧ
ݕ̇ 0 0 ݑ̇−
0 ݔ̇ ݕ̇ ݒ̇−

ተ = 0 (24)

By the help of equation (23), we have for the case
1ܧ = 2ܧ = 0 

൬
ݒ߲
ݑ߲
൰

1
=

2ܥ1ܤ) − ′ܥ(2ܤ1ܥ − 2ܦ1ܤ) − (2ܤ1ܦ
2ܦ1ܥ) − ′ܥ(1ܦ2ܥ

=  ′߁

൬
ݒ߲
ݑ߲
൰

2
=

2ܥ1ܤ) − ′′ܥ(2ܤ1ܥ − 2ܦ1ܤ) (2ܤ1ܦ−
2ܦ1ܥ) − ′′ܥ(1ܦ2ܥ

= (25) ′′߁

Equation (25) gives two distinct families of curves in the hodograph plane corresponding to the two
families of characteristics C' and C" in the physical plane. For a reducible equation, the hodograph
characteristics ߁′  and ߁"  are determined in advance by equations (18) and independent of the particular
initial conditions considered. In general, the characteristics depend on both the differential equations
and the initial conditions. ,

Consider again the two-dimensional irrotational steady flow [equation (22)]. We have for the
expressions 1ܣ , . . 2ܧ

1ܣ = 2ݑ − 1ܤ      ,2ܽ = 1ܥ       ,ݒݑ = 1ܦ       ,ݒݑ = 2ݒ − 1ܧ     ,2ݑ = 0 
2ܣ       = 2ܤ     ,0 = 2ܥ     ,1− = 2ܦ       ,1 = 2ܧ     ,0 = 0 (26)

The physical characteristics are then
′ܥ = ߠ)݊ܽݐ − (27) (ߙ

′′ܥ = ߠ)݊ܽݐ +  (ߙ
which are identical to those obtained in [1], ie, equation (11). The corresponding hodograph
characteristics are

൬
ݒ߲
ݑ߲
൰

1
=  ′′ܥ

൬
ݒ߲
൰2ݑ߲

= (28) ′ܥ

We may integrate equation (28) to get a universal function ݂(ݑ, (ݒ = 0  for the hodograph
characteristics. This function is useful in the graphical method of finding the flow field of a supersonic
irrotational steady two-dimensional flow. It was first used by Busemann and will be discussedin next
section.
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4  Characteristic equations :

From this point on we shall consider only the cases with two real families of characteristics,
ie, hyperbolic type equations. From the last two sections, we see that the characteristic equations
obtained from these two points of view are exactly the same. Hence from a given flow problem, we
need to consider either a second-order partial differential equation or a system of two first-order
differential equations.

We shall have the following two families of characteristics:

൬
ݒ߲
ݑ߲
൰

1
= ,ݔ)′′ܥ ,ݕ ߰, ݔ߰ ,  (ݕ߰

൬
ݒ߲
ݑ߲
൰

1
= ,ݔ)′ܥ ,ݕ ߰, ݔ߰ , ݕ߰ ) (29)

The characteristic equations which hold along these characteristic curves are equations (8),
(16), and (17). For the first family of characteristics, with as parameter, we have the following three
relations along the characteristic C':

ߦݕ − ߦݔ′ܥ = 0 

ߦݔ߰′ܥܣ + ߦݕ߰ܥ + ߦݕܦ = 0 

ߦ߰ − ߦݔݔ߰ − ߦݒݕ߰ = 0 (30)
For the second family of characteristics, with  as a parameter, we have another three

relations along the characteristics C:
ߟݕ − ߟݔ′ܥ = 0 

ߟݔ߰′ܥܣ + ߟݕ߰ܥ + ߟݕܦ = 0 (31)

ߟ߰ − ߟݔݔ߰ ߟݒݕ߰− = 0 
If we choose ߦ  and  as the independent variables, we have the five unknowns

,ߦ)ݔ ,(ߟ ,ߦ)ݕ ,(ߟ ,ߦ)߰ ݊), ,ߦ)ݔ߰ ݊),  and ߰ߦ)ݕ, ݊) and the above equations (30) and (31). However
one of these six equations is automatically satisfied if the other five are satisfied. This statement may
be proved as follows:

Multiplying equation (30) by y equation (31) by ߦݕ, and subtracting the resultant equations,
we have

ߟݕߦݔ߰′ܥ)ܣ − (ߦݕߟݔ߰′′ܥ + ߟݕߦݕ߰)ܥ − (ߦݕߟݕ߰ = 0 (32)

Dividing equations (32) by ܥ′ܥ" = and using the relations (30a) and (31a), we obtain  ܣ/ܥ
ߟݔߦݔ߰ + ߟݕߦݕ߰ = ߦݔߟݔ߰ + ߦݕߟݕ߰  (33)

Differentiating equation (30c) with respect to  gives
ߟߦ߰ − ߟݔ߰ ߦݕߟݕ߰− ߟߦݔݔ߰− ߟߦݕݕ߰− = 0 (34)

while using equation (33), equation (34) becomes
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߲
ߦ߲ ߟ߰) − ߟݔݔ߰ − ߟݕݕ߰ ) = 0 (35)

It follows that
ߟ߰ − ߟݔݔ߰ − ߟݕݕ߰ = ℎ(ߟ) 

where ℎ(ߟ)  is an arbitrary function of  only..

Consider a boundary curve which is intersected by the family of curves = constant. If equation
(31c) is satisfied along this boundary, the function ℎ(ߟ)  vanishes. Equation (31c) is then also satisfied
in the interior. The initial or boundary conditions must be prescribed so that equation (3lc) is satisfied
along the boundary. In practice the boundary is usually a streamline which may be assigned the value
߰ = 0 , so that equation (31c) is automatically satisfied.

If the value of the function ߰  and its first derivatives are given along a certain curve in the
region considered, we may approximately calculate the values of the function of ߰  at points in the
neighborhood of the given curve by finite difference methods. This is the method of characteristics.
Before discussing the practical procedure, we would like to point out some fundamental concepts and
properties associated with the characteristics.

5  Some fundamental properties of characteristics :

The first important concept of characteristics is the domain of dependence.

Figure 2: Domain of dependence

     Consider an ordinary curve K given in parametric form by ݔ = ݕ   ,(ߦ)0ݔ = An ordinary ,(ߦ)0ݕ
curve is one which intersects any single characteristic not more than once (Fig. 2). We assume that
ݔ߰,߰   and ߰ݕ   are given along the curve K, and that they are continuous functions. These are the
initial values of the problem. Consider a segment ab on this curve. Through point a there are two
characteristics ܥ′ and ܥ" . Through point b there are also two characteristics. As shown in Fig. 11.2,
the ܥ′ characteristics through a will intersect the ܥ"  characteristic through b. The intersection point
is P. The values of the functions in the curved triangle Pab are uniquely determined by the initial
values along the segment ab and are unaffected by the values outside ab. The segment ab of K is
known as the domain of dependence of the point P.
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Figure 3: Range of influence

Figure 4: Characteristic initial value problem

The second important concept is the range of influence of a point Q on the initial curve K.
This is defined as the totality of points in the xy-plane which are influenced by the initial values at Q.
It is evident that the range of influence is made up of all points P whose domains of dependence
include Q. Hence the two curved triangular regions included between the two characteristics through
Q are the range of influence of Q (Fig. 3).

6  Conclusion

If there are discontinuities in the second derivatives of y along an initial or boundary lines K,
they are propagated along the characteristics through the points on K where the discontinuities originate.
Thus in two-dimensional steady supersonic flow, the characteristics are the Mach lines along which
the discontinuities in the derivatives of velocity components propagate.

If the initial values are given along one characteristic only, the problem is indeterminate.
However, if we are given the initial values along two characteristics K of ܥ"  and K1 of ܥ′, as in Fig. 4,
the problem is uniquely determined. For instance, if  ab of K and ac of K1 are given, the value of in the
quadrilateral region Pabc is uniquely determined.
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7  Scope of Future Work :

The investigations that are carried out in this article throw the light on how the nature of
second order partial differential equations is relevent to study the nature of the fluid flows. These
results are helpful for further research both analytically and numerically in hydro dynamics and allied
subjects.
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