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Abstract

In this paper we have studied five-dimensional Bianchi type-V spacetime in the f (R,T)  theory. To

solve Einstein’s field equations, we have assumed that the Hubble parameter is inversely proportional toݐݎℎ  

power of the scale factor  i.e.  ܪ ∝  
1
ݎߙ

 . We have obtained a singular model for ݎ > 0, non-singular model

for ݎ = 0 . The physical behavior of the models has also been discussed using some physical parameters.

Key words : Bianchi type-V,   f (R,T) gravity, deceleration parameter, Higher dimension.

Introduction

General relativistic cosmological models provide a framework for investigation of the evolution
of the Universe. Physical cosmology is based on the Friedmann-Robertson-Walker (FRW) world
models, which describe the Universe as completely homogeneous and isotropic during the entire
process of cosmological expansion. Einstein general theory of relativity explain most of the gravitational
theories of the universe but it does not appropriate for some of the important problems in cosmology
like as the accelerating expansion phase of the universe. The recent scenario of accelerated expansion
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of the universe supported by astronomical observation1 has been playing an important role in modern
cosmology. It is now proved from theoretical and observational facts that our universe is in the phase
of accelerated expansion.

It is now believed that dark energy is the best candidate to explain cosmic acceleration. The
results of the Wilkinson microwave anisotropy probe (WMAP)2 and Plank indicate that the universe
consists 68.5% dark energy, 26.5% dark matter and 5% baryonic matter.

In order to explain the accelerated expansion of the universe two theories are usually chosen.
First one is by constructing the various dark energy components like cosmological constant3,
quintessence4, k-essence5, phantom energy6 etc. The second one is to modify Einstein's theory of
gravitation. The astronomical observation of supernova experiments7-8 also suggests that the universe
is expanding. Cosmic microwave background radiation9 and large-scale structure10 provide indirect
evidence for late time accelerated expansion of the universe. In view of late time acceleration of the
universe and existence of the dark energy and dark matter, many useful modified theories of gravity
have been developed and studied. The modification in Einstein theory of gravitation is based on the
Einstein-Hilbert action and we obtain alternative theories of gravitation such as f (R) gravity11, f (T)
gravity12, f (G) gravity13, f (R,G) gravity14, f (R,T) gravity etc. where R,T,G are the scalar curvature,
the torsion scalar and the Gauss-Bonnet scalar respectively. Bertolami et al.15 have proposed a
generalization of f (R) theory of gravity, by including an explicit coupling of arbitrary function of Ricci
scalar R with the matter Lagrangian density Lm. The generalization of f (R) gravity by introducing the
trace of energy momentum tensor has become a most popular theory to represent the expansion
nature of the universe, known as f (R,T) theory of gravity proposed by Harko et al.16.

The quadrature forms of metric functions for Bianchi Type-V cosmological models with
perfect fluid and viscous fluid distribution have been obtained by following the work of Saha17, Singh
and Chaubey18. The solution of Einstein filed equations for homogenous but anisotropic models have
been obtained by large number of authors19-20 in various contexts by using different techniques. Shamir
et al.21 obtained the exact solutions of Bianchi type-I & V models in f (R,T) gravity by taking
 f (R,T)=R+2f (T). Reddy et al.22 have investigated the LRS Bianchi type-II universe in f (R,T)
theory of gravity. Tiwari and Mishra23 have investigated Bianchi type-V cosmological model in f (R,T)
theory. Jokweni et.al.24 explored LRS Bianchi type-I model filled with strange quark matter in f (R,T)
theory.

Higher Dimensional cosmological model plays an important role in many phases of early
stage of evolution of cosmological problems. The extra dimension plays a physical role and they being
too small are unobservable. Kaluza25 and Klein26 have done noticeable work by introducing an idea of
higher dimension spacetime of the universe. Reddy and Rao27 have studied several phases of five
dimensional spacetime in bi-metric theory and variable mass theory. Rathore and Mandawat28 have
investigated five-dimensional Bianchi type-I string cosmological model in Brans-Dicke theory. Samanta
and Dhal29 have studied higher dimensional cosmological model with perfect fluid in f (R,T) theory.
Ladke et al.30 discussed five-dimensional exact solution of Bianchi type-I spacetime in f (R,T) theory
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of gravity. Sahoo et al.31 obtained the exact solutions for five dimensional LRS Bianchi type-I spacetime
in f (R,T) theory.

Inspiring from the above analysis, we have obtained solution of five-dimensional Bianchi
type-V spacetime by considering f (R,T )=f1(R)+f2(T ) with the use of variation law of Hubble
parameter32. Physical and geometrical properties for the models are also discussed.

2. Five-Dimensional Field Equation in f(R,T)Theory of gravity :

The f(R,T) theory of gravity is the generalization or modification of general relativity. f(R,T)
gravity formulated by Harko16 whose field equations are derived from the action principal.

ܵ =  න ൬
1

ߨ16
݂(ܴ, ܶ) + (2.1)  ݔ൰ඥ−݃ ݀5݉ܮ

Where f(R,T) is an arbitrary function of the Ricci scalar  and the trace  of the energy momentum

tensor  of the matter.  is the matter Lagrangian density and  is the metric determinant of

fundamental tensor . Here we consider .

By varying the above equation (2.1) with respect to ݆݃݅ , we obtain the field equation of f(R,T) gravity
in covariant tensor form as

݂ܴ (ܴ, ܶ)ܴ݆݅ −
1
2݂

(ܴ, ܶ)݆݃݅ + ൫݆݃݅□ − ∇݅ ∇݆ ൯݂ܴ (ܴ, ܶ)  = ݅ܶߨ8  ݆ − ൫ܶ݅ ݆ + Θ݆݅ ൯݂ܶ (ܴ, ܶ)     (2.2)

where ݂ܴ (ܴ, ܶ) ≡  ߲݂ (ܴ,ܶ)
߲ܴ

,  ݂ܶ (ܴ, ܶ)  ≡   ߲݂(ܴ,ܶ)
߲ܶ

,  ܶ݅ ݆  =  − 2 
ඥ−ɡ

߲ (√−ɡ݉ܮ)
߲݆݃݅

, □ ≡  ∇݅∇݅    is the D’Alembert

operator,  is the covariant derivative and  is the Ricci tensor and  is defined as

Θ݆݅  = ݉ܮ݆݅݃  − 2ܶ݅ ݆ − 2݈݃݇
݉ܮ2߲

߲݆߲݈݃݅݃݇
  (2.3)

Here the energy-momentum tensor is considered to be perfect fluid which is defined as
ܶ݅ ݆  = ݌)  + ݅ݑ(ߩ ݑ݆ − ݆݅݃݌   (2.4)

Where ݅ݑ = (0,0,0,0,1)  is the velocity in the co-moving coordinates which satisfies the condition
݅ݑ݅ݑ = are the energy density and pressure of the fluid, respectively. Here the matter  ݌ and  ߩ .1
Lagrangian can be taken as ݉ܮ = in equation (2.3)   ݌−

Θ݆݅  = ݆݅݃݌−  − 2ܶ݅ ݆  (2.5)
Also, above field equation (2.2) takes the form

݂ܴ (ܴ, ܶ)ܴ݆݅ −
1
2
݂(ܴ, ܶ) ݆݅݃ + ൫ ݆݅݃□ − ∇݅∇݆൯݂ܴ (ܴ, ܶ)  = ݅ܶߨ8  ݆ + ൫ܶ݅ ݆ + ݆݅݃݌ ൯݂ܶ (ܴ, ܶ) (2.6)

Three explicit functional form of  f(R,T) have also been considered in Harko et al.16 Which are



݂(ܴ, ܶ)  =  ቐ
ܴ + 2݂(ܶ)

1݂(ܴ) + 2݂(ܶ)
1݂(ܴ) + 2݂(ܴ) 2݂(ܶ)

  (2.7)

In this paper we have considered that ݂(ܴ, ܶ) = 1݂(ܴ) + 2݂(ܶ) . Therefore, the gravitational field
equation (2.6) becomes

1݂
′ (ܴ)ܴ݆݅ −

1݂(ܴ) ݆݅݃

2 + ൫ ݆݅݃□ − ∇݅ ∇݆ ൯ 1݂
′(ܴ) = ݅ܶߨ8 ݆ + 2݂

′(ܶ)ܶ݅ ݆ + ቆ 2݂
′ ݌(ܶ) + 2݂(ܶ)

2 ቇ ݆݅݃   (2.8)

where prime denotes differentiation with respect to argument. Here we consider a particular form of
the function 1݂(ܴ) = (ܶ)and 2݂  1ܴߣ = where  and  are arbitrary parameters. So that  2ܶߣ

݂(ܴ, ܶ) = 1ܴߣ +  .2ܶߣ

Now, equation (2.8) can be rewritten as

1ܴ݆݅ߣ −
1
2
1ܴ݆݃݅ߣ + ൫݆݃݅□ − ∇݅∇݆ ൯1ߣ  = ݅ܶߨ8  ݆ + 2ܶ݅ߣ ݆ + 2ߣ ൬݌ +

ܶ
2
൰݆݃݅   (2.9)

Since ൫݆݃݅□ − ∇݅ ∇݆ ൯1ߣ = 0, , we get

݆݅ܩ1ߣ  = ݅ܶߨ8  ݆ + 2ܶ݅ߣ ݆ + 2ߣ ൬݌ +
ܶ
2൰݆݃݅   (2.10)

Where ݆݅ܩ = ܴ݆݅ −
1
2
ܴ݆݃݅   is the Einstein tensor. Equation (2.10) reduces to

݆݅ܩ −
2ߣ

1ߣ
൬݌ +

ܶ
2
൰݆݃݅  =  ൬

ߨ8 + 2ߣ

1ߣ
൰ ܶ݅ ݆   (2.11)

Since Einstein equation with cosmological constant.
݆݅ܩ − Λ݆݃݅  = ݅ܶߨ8−  ݆   (2.12)

We have chosen a negative small value for the arbitrary , so that we have same sign for the

equations (2.11) and (2.12) in right hand side. The term  2ߣ

1ߣ
൬݌ +

ܶ
2
൰ can now be regarded as a

cosmological constant. Hence, we write

Λ ≡  Λ(ܶ)  =  
2ߣ

1ߣ
൬݌ +

ܶ
2൰ 

 (2.13)

The dependence of cosmological constant (Λ)  on the trace  of the energy momentum tensor  ܶ݅ ݆
have been proposed by Poplawski33, where the cosmological constant in the gravitational Lagrangian
is a function of trace of energy momentum tensor. In this paper we have considered the perfect fluid
distribution case, so the trace of energy momentum tensor ܶ = ߩ − for our model, equation  ݌4
(2.13) becomes to
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Λ =  
2ߣ

1ߣ
ቀ
ߩ
2 − ቁ  (2.14)݌

Now, from the equations (2.11) and (2.13) we have

݆݅ܩ  =  ൬
ߨ8 + 2ߣ

1ߣ
൰ ܶ݅ ݆ + Λ݆݃݅   (2.15)

3 Metric and Field Equations in V5 :

In this section we have obtained exact solution of five-dimensional Bianchi type-V space
time in  theory of gravity. The line element for Bianchi type-V in  is given by

2ݏ݀   = 2ݐ݀  − 2ݔ݀(ݐ)2ܣ − ݔ2݉݁ 2ݕ݀(ݐ)2ܤ} + 2ݖ݀(ݐ)2ܥ + (3.1)   {2ݑ݀(ݐ)2ܦ

Where  is constant and ܦ ,ܥ ,ܤ ,ܣ  are function of cosmic time ݐ . The corresponding Ricci scalar
is given by

ܴ = 2 ቈ
ܣ̈
ܣ +

ܤ̈
ܤ +

ܥ̈
ܥ +

ܦ̈
ܦ +

ܣ̇
ܣ
ܤ̇
ܤ +

ܣ̇
ܣ
ܥ̇
ܥ +

ܣ̇
ܣ
ܦ̇
ܦ +

ܤ̇
ܤ
ܥ̇
ܥ +

ܤ̇
ܤ
ܦ̇
ܦ +

ܥ̇
ܥ
ܦ̇
ܦ −

6݉2

2ܣ ቉  (3.2)

From equation (2.15), cosmological field equations for the metric (3.1) are as follows

ܤ̈
ܤ +  

ܥ̈
ܥ +  

ܦ̈
ܦ +  

ܥ̇ܤ̇
ܥܤ +  

ܦ̇ܥ̇
ܦܥ +  

ܤ̇ܦ̇
ܤܦ −

3݉2

2ܣ  =  ൬
ߨ8 + 2ߣ

1ߣ
൰ ݌ − Λ  (3.3)

ܣ̈
ܣ

+ 
ܥ̈
ܥ

+  
ܦ̈
ܦ

+  
ܥ̇ܣ̇
ܥܣ

+  
ܦ̇ܥ̇
ܦܥ

+  
ܣ̇ܦ̇
ܣܦ

−
3݉2

2ܣ  =  ൬
ߨ8 + 2ߣ

1ߣ
൰ ݌ − Λ  (3.4)

ܣ̈
ܣ

+  
ܤ̈
ܤ

+  
ܦ̈
ܦ

+  
ܤ̇ܣ̇
ܤܣ

+  
ܦ̇ܤ̇
ܦܤ

+  
ܣ̇ܦ̇
ܣܦ

−
3݉2

2ܣ  =  ൬
ߨ8 + 2ߣ

1ߣ
൰ ݌ − Λ (3.5)

ܣ̇
ܣ

+  
ܤ̈
ܤ

+  
ܥ̈
ܥ

+  
ܤ̇ܣ̇
ܤܣ

+  
ܥ̇ܤ̇
ܥܤ

+
ܣ̇ܥ̇
ܣܥ

−
3݉2

2ܣ  =  ൬
ߨ8 + 2ߣ

1ߣ
൰ ݌ − Λ  (3.6)

ܤ̇ܣ̇
ܤܣ

+  
ܥ̇ܤ̇
ܥܤ

+  
ܦ̇ܥ̇
ܦܥ

+  
ܣ̇ܦ̇
ܣܦ

+  
ܥ̇ܣ̇
ܥܣ

+  
ܦ̇ܤ̇
ܦܤ

−
6݉2

2ܣ  =  −൬
ߨ8 + 2ߣ

1ߣ
൰ ߩ − Λ  (3.7)

3
ܣ̇
ܣ

 =  
ܤ̇
ܤ

+
ܥ̇
ܥ

+
ܦ̇
ܦ

  (3.8)

Here dot (.) represents a derivative with respect to cosmic time ݐ .
Now, integrating equation (3.8) and absorbing the integration constant into , we get

3ܣ  = (3.9)  ܦܥܤ 
The average scale factor , the spatial volume  are defined as
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ܸ = (ݐ)4ߙ   = (3.10)  ܦܥܤܣ 
From equations (3.3) - (3.6) and (3.10), we get the following four relations respectively:

ܣ
ܤ

  = 1exp݌   ൬ 1ݍ න
ݐ݀
 4൰ߙ

 (3.11)

ܤ
ܥ

  = 2exp݌   ൬ 2ݍ න
ݐ݀
 4൰ߙ

 (3.12)

ܥ
ܦ   = 3exp݌   ൬ 3ݍ න

ݐ݀
 4൰ߙ

 (3.13)

ܣ
ܦ   = 4exp݌   ൬ 4ݍ න

ݐ݀
 4൰ߙ

 (3.14)

Where , , , , , ,  and  are constants of integration.
Now, from equations (3.11) - (3.14) we obtain

ܣ
ܥ   = exp 2݌1݌   ൬ (1ݍ + න(2ݍ

ݐ݀
 4൰ߙ

 (3.15)

ܤ
ܦ

  = exp 3݌2݌   ൬ (2ݍ + න(3ݍ
ݐ݀
 4൰ߙ

 (3.16)
Using (ݐ)4ߙ = we have ,ܦܥܤܣ

(ݐ)ܣ  = ߙ1ߙ  exp ൬1ߚ න
ݐ݀
4൰  (3.17)ߙ

(ݐ)ܤ  = ߙ2ߙ  exp ൬2ߚ න
ݐ݀
4൰  (3.18)ߙ

(ݐ)ܥ  = ߙ3ߙ  exp ൬3ߚ න
ݐ݀
4൰  (3.19)ߙ

(ݐ)ܦ  = ߙ4ߙ  exp ൬4ߚ න
ݐ݀
4൰ߙ  (3.20)

Where

1ߙ  = [(2݌1݌)4݌1݌] 
1
2ߙ    ,4  =  ൤

1
1݌
൨(3݌2݌)2݌

1
4
,  

3ߙ   =  ൤
1
2݌
3݌ ൬

1
2݌1݌

൰൨
1
4

4ߙ   ,  =  ൤
1
3݌

1
4݌
൬

1
3݌2݌

൰൨
1
4
  (3.21)

and
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1ߚ  =  
1ݍ + 4ݍ + 1ݍ) + (2ݍ

4
2ߚ   ,  =  

1ݍ− + 2ݍ + 2ݍ) + (3ݍ
4

, 

3ߚ    =  
2ݍ− + 3ݍ − 1ݍ) + (2ݍ

4 4ߚ   , =
3ݍ− − 4ݍ − 2ݍ) + (3ݍ

4    (3.22)

The constants , , ,  and , , ,  satisfy the following two relations:

4ߙ3ߙ2ߙ1ߙ = 1ߚ             ,1 + 2ߚ + 3ߚ + 4ߚ = 0  (3.23)
Substituting equation (3.10) in equations (3.17) - (3.20), we obtain
1ߙ    = 1, 1`ߚ = 0  and put 2ߙ =  ݉1 , 3ߙ =  ݉2 4ߙ   , =  ݉3 , 2ߚ = ݊1 , 3ߚ = ݊2 , 4ߚ = ݊3  (3.24)

Again, substituting equation (3.24) in equations (3.17) - (3.20), the metric coefficients in terms of
average scale factor can be written as

(ݐ)ܣ = (3.25)  ߙ 

(ݐ)ܤ  = ߙ1݉  exp ൬݊1 න
ݐ݀
4൰  (3.26)ߙ

(ݐ)ܥ  = ߙ2݉  exp ൬݊2 න
ݐ݀
4൰  (3.27)ߙ

(ݐ)ܦ  = ߙ3݉  exp ൬݊3 න
ݐ݀
4൰  (3.28)ߙ

Constants  and satisfy the following two relations:

݉1݉2݉3 = 1,       ݊1 + ݊2 + ݊3 = 0  (3.29)

The modified gravity field equations can be solved, if we assume that Hubble parameter (ܪ)  is

inversely proportional to the  power of scale factor . This gives

ܪ = ݎ−ߙ݈ ;       ݈ > 0, ݎ ≥ 0  (3.30)

4 Some Important Physical Quantities :

The average scale factor and the spatial volume are defined respectively as under

ܽ = (ܦܥܤܣ)
1
4, ܸ = 4ߙ = ABCD  (4.1)

The generalized mean Hubble parameter  is defined by

= ܪ  
ߙ̇
ߙ  =  

1
4෍݅ܪ

4 

 
݅=1

  (4.2)

Where  1ܪ = ܣ̇
ܣ
2ܪ ,  = ܤ̇

ܤ
3ܪ ,  = ܥ̇

ܥ
 and 4ܪ = ܦ̇

ܦ
 are the directional Hubble parameters in the
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directions of  and  respectively..

The anisotropy parameter  is defined as

݉ܣ  =  
1
4෍൬

݅ܪ − ܪ
ܪ ൰

24

݅=1

  (4.3)

The expansion scalar  and shear scalar  are defined as

= ߠ ݅;ݑ 
݅  =  

ܣ̇
ܣ +  

ܤ̇
ܤ +

ܥ̇
ܥ +  

 ܦ̇
ܦ   (4.4)

2ߪ  =  
1
2 ߪ݆݅ߪ

݆݅  (4.5)

Where  is shear tensor which is defined as

݆݅ߪ  =  
1
2 (∇݅ ݑ݆ + (݅ݑ݆∇ −

1
݆݅݃ߠ4   (4.6)

Shear scalar  in term of Hubble parameters is defined as

2ߪ  =  
1
2
ቌ෍2݅ܪ − 2ܪ4

4

 
 

݅=1

ቍ  (4.7)

The deceleration parameter ݍ is defined as under

= ݍ    −1 +
݀
ݐ݀
൬

1
ܪ
൰  (4.8)

From equation (3.30) and (4.2), we obtain average scale factor  as,

(ݐ)ܽ  =  ൜(݈ݐݎ + ݎ/1(1݇   , ݎ > 0
݇2 exp(݈ݐ)     , ݎ = 0

  (4.9)

Where  and  are constant of integration.

Put       (݈ݐݎ + ݇1) =  ߬  (4.10)

5 Five-Dimensional Model of The Universe When ݎ > 0 

For ݎ > 0 , using equations (3.24) - (3.27), we obtain
(ݐ)ܣ = ݎ/1߬    (5.1)

(ݐ)ܤ  = ݎ/1߬1݉   exp ൤
݊1

ݎ)݈ − 4) ߬
൨ݎ/(4−ݎ) ݎ       , ≠ 4  (5.2)
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(ݐ)ܥ  = ݎ/2߬1݉   exp ൤
݊2

ݎ)݈ − 4) ߬
൨ݎ/(4−ݎ) ݎ       , ≠ 4  (5.3)

(ݐ)ܦ  = ݎ/3߬1݉   exp ൤
݊3

ݎ)݈ − 4) ߬
൨ݎ/(4−ݎ) ݎ       , ≠ 4  (5.4)

For this solution, the metric (3.1) becomes

2ݏ݀  = 2ݐ݀  − ߬
2
ݎ 2ݔ݀ 

− ߬
2
ݎ ݔ2݉݁   ൜݉1

2 exp ൬
2݊1

ݎ)݈ − 4) ߬
4−ݎ
ݎ ൰ 2ݕ݀  + ݉2

2 exp ൬
2݊2

ݎ)݈ − 4) ߬
4−ݎ
ݎ ൰ 2ݖ݀

+ ݉3
2 exp ൬

2݊3

ݎ)݈ − 4) ߬
4−ݎ
ݎ ൰݀2ݑൠ 

 (5.5)

For the model ݎ > 0 , the spatial volume (ܸ) , Hubble parameter (ܪ)  and expansion scalar (ߠ)  are
respectively given by

ܸ = 4ߙ   = ݎ/4߬   (5.6)

= ܪ        
݈
߬

  (5.7)

= ߠ        
4݈
߬

  (5.8)

The deceleration parameter ݍ , shear scalar 2ߪ, anisotropy parameter (݉ܣ)  and anisotropy for the
model can be expressed as

= ݍ ݎ  − 1  (5.9)
which is constant.

2ߪ     =  
(݊1

2 + ݊2
2 + ݊3

2)
ݎ/2߬8   (5.10)

݉ܣ     =   
(݊1

2 + ݊2
2 + ݊3

2)
ݎ/(ݎ8−2)4݈2߬   (5.11)

   
ߪ
ߠ

 =   
(݊1

2 + ݊1
2 + ݊1

2)1/2

ݎ/(ݎ−4)݈߬ 2√4
  (5.12)

Now, from equations (5.1) - (5.4) and (3.3) - (3.7), we obtain pressure (݌) and energy density (ߩ) 
of the universe

(ݐ)݌  =  
1ߣ−

ߨ8) + ߨ16)(2ߣ + (2ߣ5
ቂ2(݊1݊2 + ݊2݊3 + ߨ8)(3݊1݊ + −߬(2ߣ2

8
ݎ + ߨ16)3݉2 + −߬ (2ߣ

2
ݎ

+ ݎ)}3݈2 − ߨ16(2 + ݎ3) −  2ቃ−߬ {2ߣ(4
 (5.13)

(ݐ)ߩ  =  
1ߣ−

ߨ8) + ߨ16)(2ߣ + (2ߣ5
ቂ2(݊1݊2 + ݊2݊3 + ߨ8)(3݊1݊ + −߬(2ߣ3

8
ݎ − ߨ16)6݉2 + −߬ (2ߣ3

2
ݎ

+ ߨ16}6݈2 + ݎ) +  ቃ 2−߬ {2ߣ(2
 (5.14)
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From equations (5.13), (5.14) and (2.14), we obtain the expression for cosmological constant

Λ(ݐ)  =  
2ߣ

ߨ16) + (2ߣ5
ቂ(݊1݊2 + ݊2݊3 + ݊3݊1) ߬−

8
ݎ + 12݉2 ߬−

2
ݎ + ݎ)6݈2 − 3) ߬−2 ቃ  (5.15)

Figure 1:  Plot of  versus  for ݊1 = ݊2 = ݊3 = 1, ݎ = 2 

6 Conclusion for model ݎ > 0 
The model has a singularity at   ݐ = − ݇1

ݎ݈
  i.e.  ߬ = 0   known as point type singularity. From

equations (5.1) - (5.4) we observe that the scale factors  and  are vanish at this point of
singularity.

From the model we observe that the spatial volume (ܸ) is zero and expansion scalar (ߠ)  is
infinite at ߬ = 0  which shows that the universe starts evolving with zero volume at ߬ = 0  which is
big bang scenario.

Figure 2:  Plot of  versus  for ݊1 = ݊2 = ݊3 = 1, ݎ = 20 
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The Hubble parameter (H) and shear scalar 2 are infinitely large at  = 0. The physical
quantities pressure (p), energy density () and cosmological constant () diverge at  = 0.  In the
large time i.e. as t , Hubble parameter (H), expansion scalar ( ), shear scalar (2), pressure,
density and cosmological constant becomes negligible. As t , spatial volume (V) become infinite.

From equation (5.9), we find that ݍ = ݎ − 1,  which is constant. A positive sign of q i.e.
ݎ > 1  corresponds to the decelerating phase of expansion whereas for ݎ < 1, q is negative which
shows that the universe in the model is in accelerating phase.

For 0 < ݎ < 4, from figure (1) at  = 0, anisotropy parameter (Am) and anisotropy ቀߠߪቁ diverge

which indicating that the universe was anisotropic model at the initial time. ݉ܣ → ߠߪ ,0  → → ݐ ݏܽ  0  ∞.
This shows that the universe in the model turns isotropic at late time, which agrees Collins and
Hawking34.

For ݎ > 4 , from figure (2) anisotropy parameter and anisotropy are proportional to  which
shows that universe was isotropic at initial time and turns into anisotropic model at late time.

7 Five-Dimensional Model of The Universe When ( ݎ = 0) :

In this section we study the five-dimensional model of the universe for  ݎ = 0. For this model
average scale factor gives as (ݐ)ߙ = ݇2  exp	(݈ݐ). 
For  ݎ = 0, equations (3.25) - (3.28), gives

(ݐ)ܣ  =  ݇2 exp	(݈ݐ)  (7.1)

(ݐ)ܤ  =  ݉1݇2 exp(݈ݐ) ݌ݔ݁ ቊ−
݊1

4݈ ݇2
4 ݁

ቋ (7.2)ݐ4݈−

(ݐ)ܥ  =  ݉2݇2 exp(݈ݐ) ݌ݔ݁ ቊ−
݊2

4݈ ݇2
4 ݁

ቋ (7.3)ݐ4݈−

(ݐ)ܦ  =  ݉3݇2 exp(݈ݐ) ݌ݔ݁ ቊ−
݊3

4݈ ݇2
4 ݁

ቋ (7.4)ݐ4݈−

For these solutions, the metric (3.1) becomes

2ݏ݀  = 2ݐ݀  − ݇2
2ݔ݀ݐ2݈݁ 2

− 2݇ݔ2݉݁
ݐ2݈݁ 2 ቈ݉1

2 exp ቆ
−݊1

2݈݇2
4 ݁

2ݕቇ݀ݐ4݈− + ݉2
2 exp ቆ

−݊2

2݈݇2
4 ݁

2ݖቇ݀ݐ4݈−

+ ݉3
2 expቆ

−݊3

2݈݇2
4 ݁

2቉     (7.5)ݑቇ݀ݐ4݈−

In case of ݎ = 0 , spatial volume (ܸ) , Hubble parameter (ܪ), expansion scalar (ߠ)  and deceleration
parameter ݍ take the form
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ܸ =  ݇2
ݐ4݈݁ 4  (7.6)

= ܪ      ݈ (7.7)
= ߠ     4݈ (7.8)
= ݍ    −1 (7.9)

The shear scalar  obtained as

2ߪ  =  ቆ
݊1

2 + ݊2
2 + ݊3

2

2݇2
8 ቇ ݐ8݈−݁  (7.10)

The anisotropy parameter  becomes

݉ܣ
 =  ቆ

݊1
2 + ݊2

2 + ݊3
2

4݈2 ݇2
8 ቇ ݐ8݈−݁  (7.11)

Now, from equations (3.3) - (3.7) and (7.1) - (7.4), we obtain pressure (݌)  and energy density (ߩ)  of
the universe for the model ݎ = 0 

(ݐ)݌  =  
1ߣ−

ߨ8) + ߨ16)(2ߣ + (2ߣ5
[2݇2

−8(݊1݊2 + ݊2݊3 + ߨ8)(3݊1݊ + ݐ8݈−݁ (2ߣ2

+ 3݉2 ݇2
ߨ16)2− + ݐ2݈−݁ (2ߣ − ߨ8)12݈2 +  [ (2ߣ

 (7.12)

(ݐ)ߩ  =  
1ߣ−

ߨ8) + ߨ16)(2ߣ + (2ߣ5
[2݇2

−8(݊1݊2 + ݊2݊3 + ߨ8)(3݊1݊ + ݐ8݈−݁ (2ߣ3

− 6݉2 ݇2
ߨ16)2− + ݐ2݈−݁ (2ߣ + ߨ8)12݈2 + (7.13)  [(2ߣ

From equations (7.12), (7.13) and (2.14), we obtain the expression for cosmological constant

Λ(ݐ)  =  
2ߣ

ߨ16) + (2ߣ5
[݇2

−8(݊1݊2 + ݊2݊3 + ݐ8݈−݁ (3݊1݊ + 9݉2  ݇2
ݐ2݈−݁ 2− − 18݈2]  (7.14)

8 Conclusion for model  ݎ = 0

This model shows a non-singular behavior and does not possess any singularity during the

phase of expansion. Model also follow the accelerated expansion as  ܸ̇
ܸ

> 0  with ݈ > 0 . The metric

coefficients ܤ,ܣ, ,ܥ and spatial volume (ܸ)  of the universe increase exponentially with the cosmic ܦ
time . ݐ

We observe that pressure (݌) , energy density(ߩ) , cosmological constant (Λ), anisotropy

parameter (݉ܣ)  and shear scalar (2ߪ)  decrease exponentially with cosmic time t. Since 
ߪ
ߠ → 0 as t

, which shows that the universe attains isotropy at later stages. The deceleration parameter
q =  1, shows accelerating expansion of the universe. We shall search more solutions for other
higher dimensional space time in f (R,T) theory by taking various functional form of  f (R,T) as per
Harko et al.16.
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