(2, 2) - Total Domination in Graphs

V.R. KULLI

Department of Mathematics, Gulbarga University Gulbarga 585 106 (INDIA)

* e-mail: vrkulli@gmail.com

(Acceptance Date 5th February, 2014)

Abstract

A set S of vertices in a graph G=(V, E) is a (2, 2)-total dominating set of G if every vertex in V is adjacent to at least 2 vertices in S and at least 2 vertices in V – S. The minimum cardinality of a (2, 2)-total dominating set is called the (2, 2)-total domination number of G and is denoted by $\gamma_{t2,2}(G)$. In this paper, we initiate a study of (2, 2)-total domination in graphs. Some bounds on $\gamma_{t2,2}(G)$ are found and its exact values for some standard graphs are obtained.

Keywords: total domination, 2-total domination, (2,2)-total domination.

Mathematics Subject Classification: 050C.

1. Introduction

The graphs considered here are finite, undirected without loops and multiple edges. Unless and otherwise stated, the graphs G=(V, E) considered here have p=|V| vertices and q=|E| edges. For graph theoretic terminology, we refer to Harary².

A set $D \subseteq V$ is a dominating set of G if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Recently many new domination parameters are given in the books by Kulli^{3.6.7}.

A set D of vertices in a graph G is a total dominating set if every vertex in V is adjacent to some vertex in D. The total domination number $\gamma_{\ell}(G)$ of G is the minimum cardinality of a total dominating set of G, ¹. This concept was generalized in Kulli⁴ as follows:

A set $D \subseteq V$ is an *n*-total dominating set of G if every vertex in V is adjacent to at least n vertices in D. The n-total domination number $\gamma_m(G)$ of G is the minimum cardinality of an n-total dominating set of G. If n=2, then $\gamma_m(G) = \gamma_{r2}(G)$, see⁵.

Kulli and Janakiram⁸ introduced the concept of (n,m)-total domination as follows:

A set $D \subseteq V$ of a graph G is an (n,m)total dominating set of G if every vertex in V
is adjacent to at least n vertices in D and at least
m vertices in V-D. The (n,m)-total domination
number $\gamma_{m,m}(G)$ of G is the minimum cardinality
of an (n,m)-total dominating set of G.

2. Results

Definition 1. A set S of vertices in a graph G=(V,E) is a (2,2)-total dominating set of G if every vertex in V is adjacent to at least 2 vertices in S and at least 2 vertices in V-S. The minimum cardinality of a (2,2)-total dominating set is called the (2,2)-total domination number of G and is denoted by $\gamma_{I2,2}(G)$.

Definition 2. A (2, 2)-total dominating set S is called a minimal (2, 2)-total dominating set if no proper subset of S is a (2, 2)-total dominating set.

We note that not all graphs have a (2, 2)-total dominating set.

Proposition 3. For any tree T, $\gamma_{12,2}(T)$ does not exist.

Proposition 4. For any cycle C_p , $\gamma_{t2,2}(C_p)$ does not exist.

Proposition 5. For any wheel W_p , $\gamma_{t2,2}(W_p)$ does not exist.

Proposition 6. For any graph G with $\gamma_{12,2}$ -set,

$$\gamma_{t2}(G) \le \gamma_{t2,2}(G). \tag{1}$$

Proof: Clearly every (2,2)-total dominating

set is a 2-total dominating set. Thus (1) holds.

We need the following results.

Proposition A^5 . For any complete graph K_p with $p \ge 3$ verices,

$$\gamma_{t2}(K_p) = 3.$$

Proposition B^5 . For any complete bipartite graph with $2 \le m \le n$,

$$\gamma_{t2}(K_{m,n})=4.$$

We now obtain (2,2)-total domination number of some standard graphs.

Proposition 7. For any complete graph K_p with $p \ge 6$ vertices,

$$\gamma_{t2,2}(K_p) = 3.$$
 (2)

Proof: Let D be a γ_{t2} -set of K_p . Then by Proposition A, |D|=3. Since $\delta(K_p)\geq 5$, every vertex v in V is adjacent to at least 2 vertices in V-D. Thus D is a (2,2)-total dominating set of K_p and hence (2) follows from (1).

Proposition 8. For any complete bipartite graph $K_{m,n}$ with $4 \le m \le n$,

$$\gamma_{t2,2}(K_{m,n}) = 4. (3)$$

Proof: Let D be a γ_{r2} - set of $K_{m,n}$. Then by Proposition B, |D|=4. Since $\delta(K_{m,n}) \ge 4$, every vertex v in V is adjacent to at least 2 vertices in V-D.

Thus D is a (2, 2)-total dominating set of $K_{m,n}$ and hence (3) follows from (1).

Theorem C^5 . If G is a connected graph with $\delta(G) \ge 2$,

$$\gamma_t(G)+1 \leq \gamma_{t2}(G)$$
.

Theorem 9. If G is a connected graph with $\delta(G) \ge 2$, then

$$\gamma_t(G) + 1 \le \gamma_{t2,2}(G) \tag{4}$$

and this bound is sharp.

Proof: By Theorem 6, $\gamma_{t2}(G) \le \gamma_{t2,2}(G)$ and by Theorem C, $\gamma_{t}(G) + 1 \le \gamma_{t2}(G)$. Thus

$$\gamma_t(G)+1\leq \gamma_{t2,2}(G).$$

The complete graphs K_p with $p \ge 6$ vertices achieve this bound.

The following result gives a characterization of (2,2)-total minimal dominating sets.

Theorem 10. A (2,2)-total dominating set D of G is minimal if and only if for each vertex v in D, there exists a vertex u in N(v) such that $|N(u) \cap D| = 2$.

Proof: Suppose D is a (2,2)-total minimal dominating set. On the contrary, suppose there exists a vertex v in D such that v does not satisfy the given condition. Then $D - \{v\}$ is not a (2,2)-total dominating set of G, which is a contradiction. Thus v satisfies the given condition.

Converse is obvious.

A γ_{12} -set is a minimum 2-total dominating set. Similarly a $\gamma_{12,2}$ -set can be defined.

We obtain a sufficient condition on γ_{l2} -set of G which is also $\gamma_{l2,2}$ -set of G.

Theorem 11. If $\gamma_{t2}(G) \leq \delta(G) - 2$, then

any γ_{12} -set of G is a $\gamma_{12,2}$ -set.

Proof: This follows from the fact that each vertex in V is adjacent to at least 2 vertices in D and 2 vertices in V - D, where D is a γ_{t2} -set of G.

We now obtain a lower bound on $\gamma_{12,2}(G)$.

Theorem 12. If G is a 4-regular graph with $\gamma_{t2,2}$ -set, then

$$\left\lceil \frac{p}{3} \right\rceil \le \gamma_{i_{2,2}} \left(G \right). \tag{5}$$

Proof: Let D be a $\gamma_{12,2}$ -set of a 4-regular graph G. Since each vertex in V is adjacent to exactly 2 vertices in V - D, we have

$$2\gamma_{12,2}(G) + \gamma_{12,2}(G) \ge p$$
. Thus (5) holds.

We obtain an upper bound for $\gamma_{t2,2}(G)$.

Theorem 13. If a $\gamma_{12,2}$ -set exists in a graph G, then

$$\gamma_{t2,2}(G) \le \frac{p}{2}.\tag{6}$$

Proof: Since the complement of a (2, 2)-total dominating set of G is a (2, 2)-total dominating set, we have

$$\gamma_{t2,2}(G) - \gamma_{t2,2}(G) \le p$$
.
Thus (6) holds.

Problem 14. Characterize graphs G for which $\gamma_{12,2}(G) = \gamma_t(G)+1$.

Problem 15. Characterize graphs *G* for which $\gamma_{t2}(G) = \gamma_{t2,2}(G)$.

References

- E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks, 10, 211-219 (1980).
- 2. F. Harary, *Graph Theory*, Addison Wesley, Reading Mass. (1969).
- 3. V.R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India (2010).
- 4. V.R. Kulli, On *n*-total domination in graphs. In *Graph Theory*, *Combinatorics*, *Algorithms*

- and Applications Y. Alavi et al., SIAM, Philadelphia, 319-324 (1991).
- V.R. Kulli, 2-total domination in graphs, Journal of Computer and Mathematical Sciences, 5(1), (2014), to appear.
- V.R. Kulli, Advances in Domination Theory I, Vishwa International Publications, Gulbarga, India (2012).
- V.R. Kulli, Advances in Domination Theory II, Vishwa International Publications, Gulbarga, India (2013).
- V.R. Kulli and B. Janakiram, The (n,m)-total domination number of a graph, Nat. Acad Sci. Lett. 24, 132-136 (2001).