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Abstract

In this study, an analysis has been performed for heat and
mass transfer with radiation effect in transient laminar boundary layer
flow of a viscous fluid past an impulsively moving infinite vertical flat
plate in a homogenous porous medium in the presence of thermal
diffusion and heat source/sink. Exact solution of momentum, energy
and diffusion equations, under Boussinesq approximation, is obtained
in closed form by use of Laplace transform technique. The variations in
fluid velocity, temperature and concentration distribution are shown
graphically, whereas numerical values of skin-friction, Nusselt number
and Sherwood number are presented in tabular form and discussed.
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Nomenclature

0B the magnetic field intensity,
C concentration at the plate,
C concentration far away from the plate,
Cw concentration at the plate,
Cp specific heat at constant pressure,

DT chemical molecular diffusivity,

qr radiative heat flux in y - direction,

t  time,
g acceleration due to gravity,
K  permeability of the porous medium,

k mean absorption coefficient,

KT thermal conductivity,
Q heat source,
Q non- dimensional heat source,
t non-dimensional time,
T  temperature of the fluid in the boundary

layer,
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Tw temperature of the plate,
T  temperature at equilibrium,
T non-dimensional temperature,
U uniform velocity of the plate,

,u v  velocity components in x  and y -direction,
,u v non-dimensional  velocity components in

x  and y -direction,
,x y  cartesian coordinate,
,x y non-dimensional cartesian coordinate,

Greek Symbols :

  volumetric expansion for heat transfer,

 volumetric expansion for mass transfer,
 density of the fluid,
 electrical conductivity of the fluid,

 Stefan Boltzmann constant,
 viscosity of the fluid,
 kinematic viscosity of the fluid.

I. Introduction

The phenomenon of hydromagnetic
(MHD) flow with heat transfer has been a
subject of interest for many researchers due
to its varied applications in thermal sciences and
technology. In fact, the problems of magneto-
hydrodynamic free and forced convection flow
in porous and non-porous media are being
investigated due to significant effect of magnetic
field on the boundary layer control and on the
performance of many engineering devices using
electrically conducting fluids. Such fluid flows
find application in MHD power generation,
MHD pumps, flow meters, accelerators,
nuclear reactors using liquid metal coolant and
geothermal energy extraction. Unsteady MHD

convection flow past a vertical plate is
investigated by a number of researchers
considering different sets of momentum and
thermal boundary conditions at the bounding
plate. Mention may be made of the research
studies by 1, 2, 3, 4, 5, 6.

In the above mentioned investigations,
the effects of thermal radiation is not taken into
account. However, free and forced convection
flow with thermal radiation finds numerous
applications in engineering and technology viz.
in glass manufacturing, furnace design, high
temperature aerodynamics, thermo-nuclear
fusion, casting and levitation, cosmical flight
propulsion system, plasma physics and spacecraft
reentry. Keeping this fact in view, investigated
laminar free convection along a vertical
isothermal plate with thermal radiation using
Rosseland diffusion approximation7. Studied
radiation effects on mixed convection boundary
layer flow along a vertical plate with uniform
surface temperature using Rosseland flux
model8. Studied solar radiation assisted natural
convection in a uniform porous medium
supported by a vertical flat plate9. Investigated
radiation effect on flow past an impulsively
started vertical plate with variable temperature10.
Considered the effects of radiation on transient
free convection flow past an impulsively
moving hot vertical infinite plate in a porous
medium11. Investigated the effects of radiation
on MHD free convection flow of a gas past a
semi-infinite vertical plate12. Considered
thermal radiation and buoyancy effects on
hydromagnetic flow over an accelerating
permeable surface with heat source or sink13.
Considered radiation effects on MHD mixed
free and forced convection flow past a semi-infinite
moving vertical plate for high temperature
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differences14. Reported effect of the radiation
on hydromagnetic convection flow of a gas
past a semi-infinite vertical plate for high
temperature differences taking into account
variable thermo-physical properties15. Studied
the influence of viscous dissipation and radiation
on unsteady MHD free convection flow past
an infinite heated vertical plate in a porous
medium taking into account the variable
suction16. Considered radiation effect on the
convective flow of a viscous fluid under
transversely applied uniform magnetic field17.
Analyzed thermal radiation effects on unsteady
MHD free convection flow of an electrically
conducing fluid past an infinite vertical porous
plate considering the effects of viscous
dissipation18.  Considered the effects of
thermal radiation on an unsteady MHD free
convection flow past a vertical plate with constant
heat flux19. Reported magnetohydrodynamic
radiative convection flow of viscous fluid past
a vertical plate embedded in a non-uniform
porous medium considering variable suction
and temperature gradient dependent heat
source/sink20. Investigated the influence of
radiation on transient hydromagnetic natural
convection flow past an impulsively moving
vertical flat plate with ramped wall temperature
and continuous temperature for a isothermal
wall21. In above mentioned studies mass
transfer effect in the presence of radiation and
magnetic field is not taken into account.

Discussed free convection and mass
transfer effects on hydromagnetic oscillatory
flow past an infinite vertical porous plate with
suction/injection under usual Boussinesq
approximation22. Examined hydromagnetic
flow of a viscous fluid with convective heat

and mass transfer past a vertical porous plate
subjected to oscillatory suction velocity23.
Considered the effect of mass transfer and
free convection heat transfer in a viscous
conducting fluid flow past a vertical porous
plate embedded in a porous medium in the
presence of heat source subjected to time
dependent suction velocity24. Analyzed the
effect of uniform transverse magnetic field on
steady free and forced convective flow with
mass transfer past an infinite vertical porous
plate25. Reported numerical solution of transient
free convection and mass transfer in the flow
of a viscous incompressible fluid under the
influence of uniform magnetic field26.
Investigated convective flow considering
different sets of thermal and diffusive
conditions27-30.

In the studies on mass transfer effects
mentioned above, the radiative heat transfer is
not taken into account, whereas its consideration
is essential particularly at high temperature
differences. In view of this fact, the aim of
the present investigation is to consider unsteady
hydromagetic natural convection and mass
transfer flow of a viscous, incompressible,
electrically conducting fluid with radiative heat
transfer past an impulsively moving vertical
flat plate embedded in a porous medium, under
usual Boussinesq approximation with concen-
tration in the presence of heat source/sink and
is extension of 21 for mass transfer. MHD
natural convection flow with radiative heat and
mass transfer resulting from such a plate in
the presence of heat source/sink is likely to be
of relevance in several engineering applications,
especially where the initial temperature and
concentration profiles assume importance in
designing of electromagnetic devices.



II. Formulation of the problem :

We consider  flow of a viscous,
incompressible, electrically conducting fluid
past an infinite vertical plate embedded in a
uniform porous medium. In two-dimensional
rectangular cartesian coordinate system
( ,x y  ), let x -axis be chosen along the plate
in the upward direction and y -axis normal
to plane of the plate in the fluid. The fluid flows
under the influence of uniform transverse
magnetic field 0B  applied parallel to y -axis.
The physical configuration and coordinate
system is shown in Fig.1. Initially, at time 0t   ,
both the fluid and plate are at rest and at uniform
temperature T   and concentration C

Fig. 1: Physical model and coordinate
system.

At time 0t   , the plate suddenly starts moving
along x -direction with uniform velocity 0U
and temperature of the plate as well as

concentration at the plate raised to Tw  and
Cw  respectively and maintained as such. Since
the plate is of infinite extent along -direction
and electrically non-conducting, all physical
quantities except pressure, are functions of  y'
and t' only. Besides, the analysis is based on
the following assumptions:
1. The induced magnetic field produced by

the fluid motion is negligible in comparison
to the applied magnetic field so that we
consider magnetic  field   0, ,00B B


. This

assumption is justified because magnetic
Reynolds number is very small for metallic
liquids and partially ionized fluids17.

2. 18No external electric field is applied so that
effect of polarization of  fluid is negligible,
so we assume   0,0,0E 


.

3. All fluid properties,  except  the density in
the buoyancy force term, are constant.

4. The viscous dissipation and Ohmic dissipation
in the energy equation are negligible.

5. The concentration of the diffusing species
in the binary mixture is considered to be
very small  in  comparison  with  the other
chemical species so that the Soret and
Dufour effects are negligible.

Taking into account the assumptions
mentioned above, the equations governing the
flow, under Boussinesq approximation are:

Continuity Equation:
 0v

y



 .  (1)

Momentum Equation:
 

 
2

2
u u g T T
t y

 
         
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 
2
0B

g C C u u
K





        

.  (2)

Energy Equation:
 

 
2 1

2
K qT T QT r T T

t C C y Cp p py  
           

. (3)

Diffusion Equation:
 2

2
C CDTt y

  


 
.  (4)

The initial and boundary conditions relevant to
the problem are:
 0t  :  0u  ,   T T   ,  C C     for all   y .

 0t  :  0u U  ,  T Tw  ,   C Cw   at  0y  .

 0u  ,   T T      C C     as   y   . (5)

Pointed out that for an optically thick
fluid, in addition to emission, there is also self-
absorption14. Usually, the absorption coefficient
is dependent on wave length and is very large31.
Therefore, we can adopt Rosseland approxi-
mation for radiative flux vector  qr . The radiative
heat flux vector  qr , under Rosseland approxi-
mation, is simplified32 as follows:

 44

3

Tqr yk

   
  ,  (6)

where k* is the mean absorption coefficient
and * is the Stefan Boltzmann constant. For
small temperature difference between fluid
temperature  T   and free stream temperature
 T  , the temperature  T   can be expanded in
Taylor series about the free stream temperature

 T  . We now expand  4T   in Taylor series
about  T   as follows:

    4 4 3 2 24 6 ............T T T T T T T T                 .

Neglecting higher order terms in the
above series beyond the first degree in ( T T   ),
we get:

 4 3 33 4T T T T      .  (7)
Introducing (6) and (7) in equation (3), we
obtain:
 

 
32 216

2 23

K TT T T QT T T
t C Cp py C k yp


 

               
. (8)

We introduce the following non-dimensional
quantities:

 0v y
y




 ,  
 2

0v t
t




 ,   

0

uu
U


 ,   T T
T

T Tw

  
  

,

 C C
C

C Cw

  
  

.

Introducing above mentioned quantities in (2),
(8) and (4), we obtain:
 

 
2 2 1
2

u u GrT GmC M K u
t y

      
 

.  (9)

 21
2

T N T QT
t Pr y

        
. (10)

 21
2

C C
t Sc y

 


 
.  (11)

where  
2

0 0

g T TwGr
U v

      (Grashof number),

  
2

0 0

g C CwGm
U v

      (Modified number),  0
0

B
M

v





(Magnetic parameter), 
 2

0
2

K v
K




  (Permeability

parameter),  Sc
DT


  (Schmidt number),
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 C pPr
KT


 (Prandtl number), 

 316

3

TN
K kT

 


(Radiation parameter) and 
 

2
0

QQ
C vp






  (Heat

source/sink parameter).

The initial and boundary conditions (4)
in non-dimensional form reduce to:
 0t  :   0u  ,   0T  ,    0C   for all  y.
 0t  :   1u  ,   1T  ,   C=1   at  y=0.
           0u  ,  0T      0C   as  y  ,  (12)

III. Solution of the problem :

It is evident from equation (9)-(11) that
the energy equation (10) and the diffusion
equation (11) are uncoupled with the momentum
equation (9). Therefore, we can obtain the solution
for fluid temperature T(y,t) and concentration
distribution C(y,t) directly by solving the
equation (10) and (11). Thereafter, using T(y,t)
and C(y,t)  in the momentum equation (9), the
solution for fluid velocity u(y,t) can be obtained.

Applying Laplace transform tech-
nique27,33 to equations (9)-(11) exact solutions
for fluid concentration C(y,t), fluid temperature
T(y,t) and fluid velocity u(y,t)  (for Sc1 (13)

    , , , ,2T y t H y a Q t . (14)
 
 

   
 , 1 , 1.0, ,3 11 1

Gr Gmu y t H y M t
a Sc 

 
     

 
 

 
 

 , 1.0, , , , ,4 1 21 1
Gr Grte H y M t H y a Q t
a a

 
 

  
 

 
 

 
 

 , , , , 1.0, ,5 6 11 1
Gr Gm tH y a Q t e H y M t
a Sc

 
 

   
 

 
 

 
 

 , ,0.0, , , ,7 81 1
Gm Gm tH y Sc t e H y Sc t
Sc Sc

 
 

 
  , (15)

where  
1

Pra
N




,  
   11

1

N M K a Q

Pr N


  


 
, 1

1
M

Sc
 



and
 

   1 1 2, , , exp1 1 2 3 4 1 2 3 3 42 2 4

G GF G G G G G G G erfc G G
G

  
   

  

 
 

  1 2exp 1 2 3 3 42 4

G GG G G erfc G G
G

 
  

 
.

IV. Skin-friction, rate of heat and mass
transfer :

The skin-friction (), rate of heat transfer
in terms of Nusselt number (Nu) and rate of
mass transfer in terms of Sherwood number
(Sh) at the plate y=0 for y=0 are obtained as
follows:

 
 0.0, 1.0, ,1

0

TNu D Q t
y y

      
. (16)

 
 0.0, ,0.0,2

0

CSh D Sc t
y y

      
. (17)

 

   
 1 0.0, 1.0, ,3 11 10

u Gr Gm D M t
y a Scy


 

               

 
 

 0.0,1.0, ,4 11
Gr te D M t
a

 


 


 

 
 0.0,1.0, ,71

ScGm te D t
Sc

 





 

 
   0.0,1.0, , 0.0,1.0, ,5 11

aGr te D Q t D Q t
a

 


     

 
 

   0.0,1.0, , 0.0, , 0.0,6 1 21
Gm te D M t D Sc t
Sc

 


      , (18)

where
 

    1 2, , , exp2 1 2 3 4 2 3 1 3 2 3 42 4

G G
F G G G G G G G G G erfc G G

G
 

  
 

 
 

  1 2exp3 2 1 3 2 3 42 4

G G
G G G G G erfc G G

G
 

   
 
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 2
22 12 exp 3 444 4

G GG G G
G G

 
   
 
 

.

V. Particular case for Sc=1 :

When Sc=1, the concentration field
C(y,t), temperature distribution T(y,t) and
velocity u(y,t) are obtained as follows:
    , ,1.0,0.0,1C y t J y t .  (19)

    , , , ,2T y t J y a Q t . (20)

 
 

 
 , 1 , 1.0, ,3 11 1

Gr Gmu y t J y M t
a M

 
    

 
 

 
    ,1.0, , , , ,4 1 51

Gr te J y M t J y a Q t
a

  


   

      
    , , , ,1.0,0.0,2 1

1

GmJ y a Q t J y t
M

  .(21)

The rate of heat transfer (Nu), the rate
of mass transfer (Sh) and the skin-friction ()
at the plate, y=0, for Sc=1 are as follows:
  0.0,1.0, ,1Nu I Q t . (22)

  0.0, 1.0, 0.0,2Sh I t . (23)

  0.0, 1.0, ,3 1I M t 

 
 

   0.0,1.0, , 0.0,1.0, ,4 1 3 11
Gr te I M t I M t
a

 


     

 
 

 
 0.0,1.0, , 0.0,1.0, ,3 1 511

Gm aGr tI M t e I Q t
M a

 


  

      0.0,1.0, , 0.0,1.0,0.0,1 2I Q t I t  .(24)

VI. Results and Discussion

An analysis is performed to study the
effects of magnetic field, permeability of the
medium, thermal buoyancy force, solutal
buoyancy force, radiation flux, heat source/
sink and time on flow field in the boundary layer

region past an impulsively moving vertical
plate. The non-dimensional equations of
momentum, energy and diffusion are expressed
in (9)-(11) and solutions are shown in (13)-
(15) under the boundary conditions (12). The
numerical values of fluid velocity versus y,
computed from the analytical solution, are
displayed graphically for various values of the
magnetic parameter (M), Grashof number
(Gr), radiation parameter (N), permeability
parameter (K), heat source/sink (Q) and time
(t). In the presence of modified Grashof
number (Gm), the numerical values of
temperature versus boundary layer coordinate
y are displayed graphically for various values
of Prandtl number (Pr), radiatio parameter
(N), heat source/sink parameter (Q) and time
(t); whereas concentration versus y is displayed
for different Schmidt number (Sc) and time
(t). To be realistic, the values of Prandtl number
(Pr) are chosen to be Pr=0.71, Pr=1.0 and
Pr=7.0, which correspond to air, electrolyte
solutions and water respectively; whereas the
values of Schmidt number (Sc) are chosen to
be Sc=0.22, Sc=0.30, Sc=0.60, Sc=0.66,
Sc=0.78 and Sc=0.94, which correspond to
hydrogen, helium, water-vapour, oxygen,
ammonia and carbon-dioxide respectively, the
species of most common interest present in
air. The values of heat source (Q<0) and heat
sink (Q>0) are chosen arbitrarily, but the
numerical values of the remaining parameters
are chosen following21.

Figures 2-7 show effects of different
parameters on fluid velocity (u) versus non-
dimensional y. It is observed that the fluid
velocity attains distinctive maximum value in
the vicinity of the plate surface and then
decreases with increasing boundary layer
coordinate y to approach the free stream value.
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Besides, it is noted that when M=0, Q=0 and
Gm=0, the results of present study are the
same as obtained by21.

Fig.2: Effect of  Grashof number on velocity
field when M = 0.5, Gm = 2.0, N = 1.0,

Q = 2.0, K = 0.5 and t = 0.5

Figure-2 demonstrates the influence
of Grashof number (Gr) on fluid velocity (u)
against boundary layer coordinate y, when
M=0.5, Gm=2.0, N=1.0, Q=2.0, K=0.5 and
t=0.5. It is observed from the figure that an
increase in Grashof number (Gr) leads to an
increase in fluid velocity (u) in the boundary
layer region. This is due to the fact that Grashof
number (Gr) signifies the relative effect of thermal
buoyancy force to viscous hydrodynamic force
in the boundary layer region, this implies that
increase in thermal buoyancy force increases
the Grashof number (Gr), so that significant
increase in velocity is noted.

Fig.3: Effect of radiation parameter on
velocity field when M = 0.5, Gm = 2.0,
Gr = 2.0, Q = 2.0, K = 0.5 and t = 0.5

Fig. 4: Effect of magnetic parameter on fluid
velocity when Gm = 2.0, Gr = 2.0,N = 1.0,

Q = 2.0, K = 0.5 and t = 0.5
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Figure-3 displays the influence of
radiation parameter (N) on fluid velocity
against boundary layer coordinate y, when
M=0.5, Gr=2.0, Gm=2.0, Q=2.0, K=0.5 and
t=0.5. It is noted that the fluid velocity increases
on increasing radiation parameter (N) in the
boundary layer region. This implies that radiation
has an accelerating influence on the fluid flow.
This is due to the fact that the radiation parameter
is chosen in such a way that non-dimensional
energy equation (11) embodies the radiation
parameter (N) in numerator. Thus, the presence
of the term of temperature in momentum
equation has positive effect on velocity.

Figure-4 is intended to illustrate fluid
velocity (u) versus boundary layer coordinate
y for different values of the magnetic parameter
(M), when Gr=2.0, Gm=2.0, N=1.0, Q=2.0,
K=0.5 and t=0.5. The figure reveals that the
fluid velocity (u) decreases on increasing
magnetic parameter (M) in the boundary layer
region. This implies that the magnetic field
decelerates fluid velocity. This is due to the fact
that the application of the transverse magnetic
field to the electrically conducting fluid generates
resistive force, which is known as Lorentz
force. This force acts as resistive force and has
tendency to decelerate fluid flow in the boundary
layer region. Due to this property, the magnetic
field is applied to control velocity in naval
energy systems.

Figure-5 shows the effects of permeability
parameter (K) on fluid velocity (u) with respect
to boundary layer coordinate y, when M=0,
Gr=2.0, Gm=2.0, Q=2.0, N=1.0 and t=0.5. It
is found that the fluid velocity (u) increases
with increase in the permeability parameter
(K) in the boundary layer region. The physics
behind this phenomenon is that an increase in

Fig.5: Effect of  permeability on velocity
field when M = 0.5, Gm = 2.0, Gr = 2.0,

Q = 2.0, N = 1.0 and t = 0.5
permeability parameter (K) implies that there
is a decrease in the resistance of porous
medium, which tends to enhance the fluid flow.

Fig.6:Effect of heat source/sink on fluid
velocity when M = 0.5, Gr = 2.0,

K = 0.5, N = 1.0 and t = 0.5
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Figure-6 is intended to illustrate the
effects of heat source/sink on fluid velocity
(u) against y, when M=0, Gr=2.0, Gm=2.0,
N=1.0, K=0.5 and t=0.5 It is observed that an
increase in numerical values of Q increases
the fluid velocity, but an increase in numerical
values of +Q decreases the fluid velocity. This
implies that heat source enhances the fluid
velocity whereas appositive effect is noted for
heat sink. In fact, the presence of heat source
increases the thermal boundary layer, which
increases the fluid velocity but heat sink reduces
the thermal boundary layer, which decreases
the fluid velocity. Besides, it is noticed that
when Gm=0 and Q=0, the results of the
present study for velocity distribution are in
agreement with the existing results obtained
by21.

Fig.7: Effect of  time on fluid velocity when
M = 0.5, Gr = 2.0, Gm = 2.0, K = 0.5,

N = 1.0 and Q = 2.0

Figure-7 represents the effects of time
on fluid velocity (u) versus y, when M=0,

Gr=2.0, Gm=2.0, N=1.0, Q=2.0 and K=0.5. It
is noticed that the fluid velocity (u) decreases
in the boundary layer region with increase in
time (t). This implies that there is retardation
in fluid velocity (u) as time progresses. In fact,
as time progresses the fluid velocity tends to
uniform velocity.

The numerical values of fluid temperature,
computed from the analytical solution (14) are
presented graphically in Figures-8, 9 and 10
for various values of Prandtl number (Pr),
radiation parameter (N), heat source/sink
parameter (Q) and time (t). It is noticed from
Figures-8, 9 and 10 that the fluid temperature
is maximum at the surface of the plate and it
decreases on increasing y to approach free
stream temperature. Besides, it is observed
that when Q=0, the results for temperature
field of the present study are exactly the same
to those obtained by21.

Fig.8: Effect of Prandtl number on fluid
temperature when N = 1.0, Q = 2.0

and t = 0.5
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Figure-8 displays the influence of
Prandtl number (Pr) on fluid temperature (T)
versus non-diemsional y, when N=1.0, Q=2.0
and t=0.5. It is observed that in the boundary
layer region, the fluid temperature (T) decreases
with increase in Prandtl number (Pr). The
Prandtl number mathematically defines the
ratio of the momentum diffusivity to the thermal
diffusivity. As such, lower Pr-value fluids
transfer heat more effectively than higher Pr-
value fluids; consequently lower temperatures
are observed for higher Pr-value fluids.
Besides, Prandtl number signifies the relative
effects of viscosity to thermal conductivity.
This implies that thermal diffusion tends to
increase fluid temperature. Hence, increase
in Prandtl number decreases the temperature.

Figure-9 is intended to demonstrate the
effects of radiation parameter (N) on fluid

Fig. 9: Effect of radiation parameter on fluid
temperature when Pr = 0.7, Q = 2.0

and t = 0.5.

temperature (T) with respect to y, when
Pr=0.71, Q=2.0 and t=0.5. It is noted that the
fluid temperature (T) increases with increase
in the radiation parameter (N) in the boundary
layer region. In fact, in the energy equation
radiation parameter exists in numerator, which
implies that increase in radiation parameter
results in an increase in temperature. Hence,
increase in radiation tends to enhance fluid
temperature.

Fig. 10:  Effect of heat source/sink on fluid
temperature when Pr = 0.7, N = 1.0

and t = 0.5.

Figure-10 represents the effects of
heat source/sink parameter (Q) on temperature
distribution (T) against non-dimensional y,
when Pr=0.71, N=1.0 and t=0.5. It is found
that in the boundary layer region, the fluid
temperature (T) increases with increase in the
heat source (Q<0), whereas decreases with
increase in the heat sink (Q>0). This implies
that the heat source is favourable to temperature

Hydromagnetic Convection Flow with---Presence of Heat Source/Sink. 49



and boosts it but heat sink shown apposite
effect. Physically, heat source increases the
thermal boundary layer, which increases the
temperature and vice-versa for heat sink.
Besides, it is observed that when , the results
of the present study for temperature field are
exactly similar to those obtained by21.

Fig.11: Effect of time on fluid temperature
when Pr = 0.7, N = 1.0  and Q = 2.0.

Figure-11 illustrates the effects of time
(t) on fluid temperature (T) against non-
dimensional y, when Pr=0.71, N=1.0 and Q=2.0.
It is noted that in the boundary layer region,
the fluid temperature (T) decreases with increase
in time (t), which implies that there is decrement
in the fluid temperature as time progresses.
The physics behind this phenomenon lies in
the fact that as time progresses the fluid
temperature tends to the equilibrium
temperature.

Fig.12:  Effect of Schmidt number (Sc) on
species concentration (C).

Figure-12 is intended to display the
effects of Schmidt number (Sc) on species
concentration (C) with respect to non-dimensional
y, choosing Sc=0.22 (hydrogen), Sc=30 (helium),
Sc=0.60 (water-vapour), Sc=0.66 (oxygen),
Sc=0.78 (ammonia) and Sc=0.94 (carbon
dioxide). It is observed that as Schmidt number
(Sc), increases the species concentration at
the plate decreases, which decreases smoothly
with the non-dimensional y. Besides, it is noted
that the curves with low Schmidt number
values fall more rapidly in comparison with-
high Schmidt number values. In fact,
concentration field with higher Schmidt number
is less stable in comparison with the lower
Schmidt number gases.

Table-1 represents the numerical
values of non-dimensional skin-friction ()
computed from the analytical expression (18)

50 Virendra Upadhyay, et al.



Table-1. Skin-friction () at the plate for different M, Q, Gr, N and time
(Pr=0.71, Gm=2.0, K=0.2)

M Q Gr N time (t)
0.2 0.4 0.6 0.8 1.0

2.0 2.0 2.0 1.0 1.8436 1.7253 1.5967 1.4689 1.3796
4.0 2.0 2.0 1.0 2.3782 2.2468 2.1359 2.0198 1.9836
2.0 -2.0 2.0 1.0 1.9834 1.8275 1.7012 1.5819 1.4237
2.0 2.0 4.0 1.0 0.9968 0.8254 0.6937 0.5213 0.3854
2.0 2.0 2.0 2.0 1.2563 1.1193 0.9874 0.7951 0.6296
2.0 4.0 2.0 1.0 1.7384 1.6285 1.5264 1.4198 1.2398

for different values of M, K, Gr, N and t
choosing Pr=0.71, Gm=2.0 and Q=2.0. It is
evident from the table, that the skin-friction ()
increases on increasing magnetic parameter
(M) or heat source parameter (Q<0), whereas
it decreases with increase in Grashof number
(Gr), heat sink parameter (Q>0), radiation
parameter (N) or time (t). These results imply
that magnetic field and heat source have
tendency to enhance the skin-friction whereas
thermal buoyancy force, radiation and heat
sink have reverse effect. Besides, as time
progresses the skin-friction decreases.

Table-2 depicts, in tabular form, the
numerical values of non-dimensional rate of heat
transfer (Nu) computed from the analytical
expression (16). It is observed that the Nusselt

Table-2. Rate of heat transfer (Nu) at the plate for different
Pr, N, Q and time

Pr N Q time (t)
0.2 0.4 0.6 0.8 1.0

0.71 1.0 2.0 0.8493 0.7689 0.6437 0.5308 0.4467
1.00 1.0 2.0 0.9756 0.8395 0.7205 0.5938 0.4899
0.71 2.0 2.0 0.7098 0.6627 0.5839 0.4821 0.3906
0.71 1.0 4.0 0.7685 0.6984 0.6194 0.5037 0.4218
0.71 1.0 “2.0 0.9468 0.8175 0.7269 0.6859 0.5437

number (Nu) decreases with increase in
radiation parameter (N) or heat sink, whereas
it increases with increase in Prandtl number
(Pr) or heat source. Also, it is noticed that as
time progresses the rate of heat transfer at
the plate decreases, which implies that time
tends to reduce the rate of heat transfer.

Table-3. Rate of mass transfer (Sc) at the
isothermal plate for different Sc and time

   t
  Sc 0.2 0.4 0.6 0.8 1.0

0.22 0.9873 1.0738 1.2654 1.3719 1.4535
0.30 0.7644 0.8957 1.5386 1.2564 1.3587
0.60 0.6819 0.7936 0.9169 1.1386 1.2678
0.66 0.6257 0.7195 0.8034 0.9984 1.0086
0.78 0.5736 0.6634 0.7116 0.8235 0.9979
0.94 0.4293 0.5768 0.6384 0.7096 0.8435
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Table-3 presents the numerical values
of the non-dimensional rate of mass transfer
(Sh) for different values of Schmidt number
(Sc) and time (t). It is observed that rate of
mass transfer in terms of Sherwood number
(Sh) decreases with increase in Schmidt
number, which implies that the gases with high
valued Schmidt number transfer mass less
effectively compared to the gases with low
Schmidt number.

VII. Conclusions

The study presents a theoretical
investigation of unsteady hydromagnetic natural
convection and mass transfer flow of a viscous,
incompressible, electrically conducting fluid
with radiative heat transfer near an impulsively
moving vertical isothermal flat plate embedded
in a porous medium in the presence of heat
source/sink. The significant findings are
summarized below:

1. The magnetic field, Prandtl number and
heat sink decelerates fluid flow, whereas
thermal buoyancy force, radiation, heat
source and permeability of the medium have
reverse effect on it. Besides, the fluid
velocity attains distinctive maximum value
in the vicinity of the plate and then decreases
with increase in the boundary layer coordinate.
Also, the velocity decreases as time
progresses.

2. The thermal buoyancy force, radiation and
heat source enhance fluid temperature,
whereas Prandtl number decelerates it. As
time progresses, there is deceleration in
temperature.

3. The species concentration is highest in case
of hydrogen and lowest for the case of
carbon dioxide gas.

4. An increase in the magnetic field or heat
source enhances skin-friction, whereas
buoyancy force, Prandtl number, radiation
and heat sink have reverse effect on it. Also,
the skin-friction decelerates as time progress.

5. An increase in Prandtl number or heat sink
decreases the rate of heat transfer, whereas
the radiation parameter and heat source
increase rate of heat transfer.

6. As Schmidt number  increase, the rate of
mass transfer decreases.
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