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Abstract

In this note, we have obtained some novel bilateral generating

functions involving modified Gegenbauer polynomials, C?f +7(x) which

is converted into trilateral generating functions with Tchebycheff
polynomials by group theoretic method.
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1. Introduction

The Gegenbauer polynomial,CA(x)
is defined by’

2]
ey — N1y Bnp(20)77%P
Cn(x)_;;( o p!(n—2p) "’

where (), is the pochhammer symbol®.

The aim at presenting this paper is to
obtain the trilateral generating functions for the

modified Gegenbauer polynomials, 3" (x)
with Tchebycheff polynomials by the group-
theoretic method. At first we shall obtain the
following theorem on bilateral generating
functions.

Theorem 1. If there exists a unilateral
generating relation of the form'

oo

Glx,w) = Z a, CE " (x) w (1.1)
n=0 b

then
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where
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2. Operator and extended form of the group:

Now we consider following linear
partial differential operator:

y% 9 y3
= x(1—x? — 3?2

R=x(1—x ) +( 3x ) 2 Oy

2x ) %
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such that
R(C,;;J'“(x]y"z‘]‘] = (n+Dn+2) CAn- 1(x))n+2 A-3

2(1-&— ) n+2

The extended form of the group generated by
R is given by
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x (X Y 2), (22)
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where 7 (x,y.z) is an arbitrary function and w
is an arbitrary constant.

3. Derivation of generating function:
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Now writing f (x, ¥, 2) = CA(x)y"z*in(22).
we get

,2)~ G+
e"R(CAm(ynzt) = {1 B xz)?}
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Again, on the other hand, with the help of (2.1)
we have
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Equating (3.1) and (3.2) and then
w y?
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substituting =t ., weget

(1 -t -2y )
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which is found derived”.
Now we proceed to prove the Theorem 1.
4. Proof of theorem I :

Let us consider the generating relation
of the form:

oo

G(x,w) = z a,CH"(x) w".

n=0

(4.1)
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Replacing w by wvy and multiplying both sides
of (4.1) by 2" and finally operating e"¥ on both
sides, we get

e"R(z* G(x, wvy))
= gWR (Z an(CH™(x)y"z*) (wv)’”‘). (4.2)

n=0

Now the left member of (4.2), with the help
of (2.2), reduces to
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The right member of (4.2), with the help of
(2.1), becomes

S, @ ), 55,
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n+
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k=
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Now equating (4.3)and (4.4) and then substituting

y=z=12w=w and§=v, we get

(1 -w)*n
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-]
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n=0

where

op(x,v) = i ay

k=0
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which is found derived* by classical method.

5. Trilateral generating functions of
biorthogonal polynomials :

In this Section the above bilateral
generating function has been converted into
trilateral generating relation with Thcebycheff
polynomial by means of the relation

TG = 5[(x+ 4% =1) " + (- v =1)"),
utilizing the method of Chongdar and Chatterjea'.

Now to convert the above bilateral
generating relation into a trilateral generating
relation with Tchebycheff polynomial as done’,
we notice that
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1
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where Pl=w(u+ ”uz_l)
p2 =w(u—Vuz —1)

Thus we have the following general theorem:

and

Theorem 2: If there exists a generating
relation of the form

Gx,w) = Z a,Crm(x) wn, (5.1)
n=0

then
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where
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which is believed to be new.
Again using the generating relation (3.2), we
get
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which is believed to be new.

Corollary I: Substituting A by A-n
in (5.3), we get the following generating
relation:

- n+1 (n+2)

i
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which is believed to be new.

Corollary 2: Putting = 0 in(5.3),
we get the following generating relation:

“_(%)_

) Ty, e CETL0)
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2e- o+ a-2)
—t(y+\/yT_1)A+_
+i—t(y-y-Da-=) [1

~¢(5 - \/yT—_l)}A%] ,(55)

which is believed to be new.

1. Conclusion

From the above discussion, it is clear
that whenever one knows a generating relation
of the form (1.1, 5.1) then the corresponding
bilateral andirilateral generating function can
at once be written down from (1.2, 5.2). So
one can get a large number of bilateral andtrilateral
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generating functions by attributing different
suitable values to@,, in (1.1, 5.1).
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