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Abstract

We introduce the notion of cone hexagonal metric space and
prove Banach contraction mapping principle in cone hexagonal metric
space. Our result extends recent known results.

Key words: cone metric space; fixed points; contraction mapping
principle; Cone rectangular metric space; Cone pentagonal metric space.

2000 Subject Mathematical Classification: 47H10, 54H25

1 Introduction

Huang and Zhang® introduced the
concept of cone metric space and established
some fixed point theorems for contractive
mappings in normal cone metric spaces.
Subsequently, several other authors®>%7:%
studied the existence of fixed points and
common fixed points of mappings satisfying a
contractive type condition on a normal cone
metric space. Recently Garg and Agarwal’
introduced the concept of cone pentagonal
metric spaces and proved Banach contraction
mapping principle in cone pentagonal metric
space.

In the paper we introduce cone
hexagonal metric spaces and prove Banach
contraction mapping principle in a complete

normal cone hexagonal metric space.
2 Preliminaries :

The following notions have been used
to prove the main result.

Definition 2.1: Let E be a real
Banach Space. A subset P of E is called cone*
if and only if
(i) Pisclosed, non empty and P # {0}.
(i) O<a,beRandx,yeP=ax+byeP.
(iii) P n(-P)={0}.

Definition 2.2: The partial ordering’
< with respect to P ¢ E is defined by x <y if
andonly if y —x € P. x <y shows thatx <y
but x # y, while x <<y will stand fory —x €
int(P), int(P) denotes the interior of P,
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Definition 2.3: A cone P is called
normal® if there is a number k > 1 such that
forallx, y € E, the inequality

O<x<y=|x|<klyl

The least positive number k satisfying
the above inequality is called the normal
constant of P.

In this paper we always suppose that
E is a real Banach space and P is a cone in E
with int(P) # ® and < is a partial ordering
with respect to P.

Definition 2.4: Let X be a non empty
set. Suppose that the mapping p: X x X — E
satisfies:
() O0<p(x,y)forallx,y € X and p(x,y)=0
if and only ifx =y,
(i) p(x.y)=p(yx) forallx,y € X.
(i) p(x,y)<p(x,2)+p(z, w)+p(w, u) +p(u, y)
forallx,y, z,w, u € X and for all distinct
points z, w, u € X - {x, y}.

Then p is called a cone pentagonal
metric’ on X and (X, p)iscalled acone pentagonal
metric space.

3 Fixed point theorem :

Inthis section we shell define hexagonal
cone metric space and prove a fixed point
theorem of contractive mapping.

Definition 3.1 Let X be a non empty
set. Suppose that the mapping d: X x X » E
satisfies:
(d1) 0<d(x,y)forallx,y € X and d(x, y)=0
ifand only ifx=Yy.
(d2) d(x,y)=d(y,x) forallx,y € X.

Manoj Garg, et al.

(d;) d(x,y) <d(x, 2) + d(z, w) + d(w, u) +
d(u, v) +d(v,y) forall x, y, z w,u,v X
and for all distinct points z, w,u, v e X —
{x, y} [hexagonal property].

Then d is called a cone hexagonal
metric on X, and (X, d) is called a cone hexagonal
metric space.

Definition 3.2 Let {x,} be a sequence
in acone hexagonal metric space (X, d) and x
€ X. If for every ¢ € E, with 0 << ¢ there

exist ng € N and that for all n > ng, d(x,, X) <<
¢, then {x,} is said to be convergent, {Xn}
converges to X and x is the limit of {x,}.It is
denoted by limp_,. X, =X 0r X, — X, as n —» o.

Definition 3.3 If for every ¢ € E, with 0
<< ¢ there exist ng € N such that foralln > No,
d(Xn. X) << ¢, then {x,}iscalled C auchy sequence
in a cone hexagonal metric space X.

Definition 3.4 If every Cauchy
sequence is convergent in a cone hexagonal
metric space (X, d), then (X, d) is called a
complete cone hexagonal metric space.

Before proving our main theorem we
present some theorems.

Theorem 3.1 Let (X, d)bea hexagonal
cone metric space and P be a normal cone

with normal constant k. Let {x,} be a sequence
in X, then {x,} converges to x if and only if
ld(xs, x)|| > 0 asn — .

Theorem 3.2 Let (X, d) be a hexagonal
cone metric space and P be a normal cone

with normal constant k. Let {x,} bea sequence
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in X, then {x,} is a Cauchy sequence if and
only if ||d(Xy, Xp+m)|| = 0 asn — o,

The proof of above theorems is similar
to Huang and Zhang [4, lemmas | and 4].

Theorem 3.3 Every cone (or rectangular
or pentagonal) metric space is cone hexagonal
metric space.

Proof: Since every cone metric is
cone rectangular metric and every cone
rectangular metric is cone pentagonal metric
and every cone pentagonal metric is cone
hexagonal metric so the proof is obvious.

The converse of the above theorem is
not necessarily true as it can be seen from the
following example.

Example 3.1 Let X =N, E=R?and P
={(x%,¥): X,y 2 0}. Define d: X x X — E as
follows:
dx,y)=(0,0)ifx=y;d(x, y) =(9, 15) ifx
andyarein {3,4}, x#y; d(x,y)=(3, 5) ifx
and y cannot both at a time in {3,4}, x #y.

Then (X, d) is a cone hexagonal (or
pentagonal or rectangular) metric space but
not a cone metric space because it lacks the

triangular property:

(9,15)=d(3,4)>d(3,5) +d(5,4)=(3,5) +
(3,5)=(6, 10)

as(9,15) - (6.10)=(3,5) € P.

Theorem 3.4 Every rectangular and
pentagonal (resp. complete rectangular and
complete pentagonal) cone metric space is
hexagonal (resp. complete hexagonal) cone
metric space.

The converse of the above theorem
is not necessarily true as it can be seen from
the following example.

Example 3.2 Let X={1,2,3,4,5, 6},
E=R’and P= {(x,y): X,y 0} is a normal
cone in E. Define d: X x X — E as follows:

d(1,2)=d(2, 1)= (5, 10).

d(1,3)=d@3, 1)=d(1,4)=d(4, 1)=d(1, 5) =
d(5,1)=d(2,3) =d(3,2)=d(2,4)=d(4,2) =
d(2,5)=d(5,2) =d(3,4)=d(4,3)=d(3, 5)=
d(5,3)=d(4,5)=d(s. 4)-= (1, 2).
d(1,6)=d(6, 1)=d(2, 6) = d(6, 2) = d(3, 6) =
d(6,3)=d(4, 6)=d(6, 4) = (4, 8).

Then (X, d) is a cone hexagonal (resp.
complete hexagonal) metric space but not a
cone pentagonal (resp. complete pentagonal)
and so cone rectangular (resp. complete
rectangular) metric space because it lacks the
pentagonal and rectangular property:

(3,10) =d(1,2) d(1, 3)+d(3,4)+d4,5) +
d(5,2)=(1,2)+(1,2)+(1,2)+(1,2)=(4,8)
as (5,10)-(4,8)=(1,2) e P.

The main theorem of this paper is as
follows.

Theorem 3.5 Let (X, d) be a hexagonal
cone metric space and P be a normal cone
with normal constant k and the mapping T: X
— X satisfies the contractive condition d(Tx,
Ty) <A d(x,y)forall x € X, where & € [0, 1)
is a constant. Then T has a unique fixed point
in X.

Proof: Let x¢ € X. Define a sequence
of points in X as follows,

X1=TXg, X2=TX; = T?Xg,. .. 0.e; X+ 1=TXn = T"xo.

We can suppose that X, is not a periodic point,
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if x, =X then,

d(xo0, TXo) = d(Xp, Tx,) = d(T™xg, T™'xg) <
Ad(T™xg, T™Xg) € A2d(T™?xo, T™'xp)
Ly < A"d(xg, Txg).

This shows that [A" — 1] d(xg, Txp) € P.

A1

It again implies that d(xp, Txg) € P.

1-A"

Thus — d(xq, Txp) € P and d(xg, Txg)=01i.e.
Xg is the fixed point of T.

Now we suppose that X, # X; ¥V m, n € N,
Using hexagonal property for all y € X, we
have

d(y, T’y) < d(y, Ty) +d(Ty, T?y) + d(T?%. T’y)
+d(T. T'y) + d(TY. T%)
< d(y, Ty) + 2d(y, Ty) + A%d(y, Ty)
+A2d(y, Ty) + 2*d(y, Ty)

< Sald(y. Ty)
i=0
Similarly, d(y, T°y) < d(y, Ty) + d(Ty, T?y) +
d(T%y, T’y) + d(T%, T'y) — d(T?y, T)
+d(T%. Ty) + d(T%. Ty) + d(T7y. T8y) +
d(T%y, T).

&
< Y Ad(y,Ty)
i=0

Now by induction, we obtain foreachk=1,2,
3.

4K .
d(y,T*"y) < ‘Zok'd(y,Ty) (1)
1=

Againforally € X,
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d(y, T°y) <d(y, Ty) + d(Ty, T?y) + d(T?y. Ty)
+d(TPy, Thy) +d(T'y. T)
< d(y, Ty) + Ad(y, Ty) + 2%d(y, Ty)
+ R2d(y, Ty)+ d(y, T?)

=

Hd(y, Ty) +a*d(y, %)
0

i

1

Il

Similarly,
d(y, T') <d(y, Ty) + d(Ty, T?y) +d(T?%. T%)
+ d(T’y. Tly) + d(T'y. T’y) + d(T%. Tfy)
+d(TC. T'y) + d(T7y. T8y) + d(T?y, T").

< d(y. Ty) + Ad(y, Ty) + A%d(y, Ty)
+13d(y, Tyy+ad(y, Ty)+2%d(y, Ty)+Asd(y, T2)
+A7d(y, Ty) + A8d(y, T %y).

e
< X 0d(y, Ty) +38d(y, T%).
i=0

By induction, we obtain for each k = 1, 2,

4k-1 .
diy, T*%y) < X Nd(y,Ty) +%d(y, T).
=0 (2)

Again, forally € X,
d(y, T’y) < d(y, Ty) + d(Ty, T?y) + d(T?y. T’y)
+d(Ty. Tly) + d(T'y. T'y)

<d(y, Ty) + Ad(y. Ty) + A%d(y, Ty) +
Ad(y, Ty) + *d(y, Ty)

3

< T NA(y, Ty) +a%d@y, TY).

i=0

Similarly,
d(y, T"y) <d(y, Ty) + d(Ty, T%) + d(T?%, T?y)
+d(Ty. T'y) + d(TYy, T'y) + d(T%. Téy) +
d(T%. T'y)+d(T7y, Ty) + d(T?y. T''y).

< d(y. Ty) + Ad(y, Ty) + A%d(y, Ty)
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+12d(y, Ty) + A*d(y, Ty)+ A*d(y, Ty)
+1d(y, Ty) + A°d(y, Ty) + A%d(y, Ty)
+17d(y, Ty) + A*d(y, T%)

T s
< Y Xd(y, Ty) +2%d(y, Ty)
i=0
So by induction, we obtain for each k = 1, 2,
4k-1 i
dy Ty < 2 M0 TY) 430, T)
1=

(3)
In a similar way for all y € X,
d(y, T*y) <d(y, Ty) +d(Ty, T?y) + d(T?y. T)
+d(T%y, T*y) +d(TYy, T%y)
< d(y, Ty) + Ad(y. Ty) + A%d(y, Ty)
+A3d(y, Ty)+ A'd(y, Ty)

=

Md(y, Ty) + 2*d(y, T')
0

pd s

Similarly,
d(y, T'y) <d(y, Ty) +d(Ty, T?y) + d(T?, Ty)
+d(Ty. T'y) + d(Ty, T) + d(T%. T®)
+d(T, T'y) + d(T7y, T8y) + d(T*y. T'2%y).

< d(y. Ty) + Ad(y, Ty) + A%d(y, Ty)
+12d(y, Ty)+2*d(y, Ty)+2°d(y, Ty)+A°d(y, T%y)
+47d(y, Ty) + 1%d(y, Ty)

T
< Y NA(y. Ty)+ 23d(y, TY).
=0

So by induction, we obtain for eachk = )

4k-1 .
d(y, T#*y)< _ZO Nd(y,Ty) +3%d(y, T)
1=

(4)
Using inequality (1) fork=1,2,3 ............ we

have, ;
d(T"x, T"**x0) < A" d(Txo, TH*'x0)

4k .
<A™ Y Ad(xq.Txq)

i=0
n
].-}\.
Tx0) + d(x0, T*Xo)] (%)

<

[d(xo, Txo) + d(xo, T?x0) + d(xo,

Similarly fork=1, 2, 3....... , inequality (2)
implies that
d(TnXQ, TEM% +2Xg) < A" d(xo, T4k+2}(0)
4k-1 :
<A X Ad(xg,Txg) +A% d(xo, T?x0)]
i=0

4k-1
<A X [A {d(x0, Txo) + d(xo, T?x0)
i=0

+d(xq, T>xg) + d(xo, T*0)} +A**{d(x0,Tx0)
+d(xo, T?x0) + d(Xo, T*X0) + d(x0, T*x0)}]
4k
SA'[ 2 A'{d(x0,Txo) +d(xo, T?xp) + d(xo,
i=0
T3x0) + d(xo, T*x0)}]

nq_44k-1
EM [d(xo, Txo) + d(xo, T*xo)

1-4&
+d(xo, T?x0) + d(xo, T*x0)]
<1 [40x0, Txo)+d(xe, Tx0) +d(xo, T*x0)
+ d(x0, T*xo)] (6)

Againfork=1,2,3......inequality (3) implies that
d(T™xp, T T4 *350) < &A™ d(xs, T* x)

4k-1 .
<A Y Nd(xg, Txg) +A% d(xo, Tx0)]
i=0
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4k
<A X AYd(x0,Txo) + d(x0, T?x0) +
i=0
d(xo, T>xp) + d(xq, T*x0)}]
3k _
<An .ZO A[d(x0,TXo0) + d(xo, T?xo)
1=
+d(x0, T>x0)]
n
1-A
d(xo, T*x0) + d(x0, T*x0)] (7)

=

[d(xo, Txo) + d(xq, T%xg) +

In a similar way by inequality (4) it can be
shown that,

d(T"xo, T" "% 4x0) < &
1-A

T?Xo) + d(x0, T°x0) + d(x0, T*x0)] (8)

[d(x0, Txo) + d(xq,

Thus by inequality (5), (6),(7) and (8) we have,
n
| B
T2x0) + d(Xo, T?%o) + d(x9, T*x0)]

d(T"xp, T"™xp) <

[d(x0, TXq) + d(xo,

Since P is a normal cone with normal constant
k, therefore,

n

k
- s, To) + d(o

T?X0) + d(Xo, T*x0) + d(xo, T*x0)]|

i.e. || d(Xn, Xm) || > 0 as n — cc.

Now theorem 3.2 implies that {x,} isa Cauchy
sequence in X. Since X is complete, there
exists z € X such that x,, - z.

Again by theorem 3.1, we have || d(T"xo, z) |
—> 0 as n - «. Since X, # x, for n # m,

I d(T"xo, T"*™x0) || <
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therefore by hexagonal property, we have
d(Tz, z) < d(Tz, T"xg) + d(T"xo, T"""xo)
+ d(T™'xo, T™2x0) + d(T™2xo, T"3x0)
+d(T"xo, 2)

< Ad(z, T™'Xp) + A" d(xg, Txg) + A™!
d(xo, Txo) + A"™d(xo, Txp) + d(T™3xy, 2).
Thus we have, || d(Tz, z) | <k [A]| d(z, T™'xo)
I+ &[] d(xo, Txo) || + &A™ || d(xo, Txo) || +
A" d(xo, Txo) || + || d(T™3xo, 2)[].

Letting n — o, we have, || d(Tz, z) | = 0.
Hence Tz=2z, i. e. z is a fixed point of T.

Now we show that z is unique. For suppose z'
be another fixed point of T such that Tz' = 7',
d(z, ) =d(Tz, TZ') < Ad(z, 2).

Hence z=z7'.

This completes the proof of the theorem.

Remark 3.1 In example 3.2, Define a
mapping T: X — X as follows:

T(x)=5ifx#6and T(x)=2ifx=6.

Note that d(T(1), T(2)) = d(T(1), T(3)) =
d(T(1), T(4)) = d(T(1), T(5)) = d(T(2), T(3))
= d(T(2), T(4))=d(T(2), T(5)) =d(T(3), T(4))
=d(T(3), T(5))=0.

And in all other cases d(T(x), Ty) =(1,2),
d(x,y) = (4, 8).

Hence, for A = 1/4, all conditions of theorem
3.5 are satisfied and 5 is a unique fixed point
of T.

Remark 3.2 In the example 3.2,
results of Garg and Agarwal’ are not applicable
to obtained the fixed point of the mapping T
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on X. Since (X, d) is not a cone pentagonal
metric space.
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