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Abstract

The object of the present paper is to introduce vg-lindeloff
spaces and study its basic properties.
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1. Introduction

In this paper vg-lindeloffness in
topological space are introduced. Some of their
basic properties are obtained and interrelations
are verified with other types of lindeloffness.

2. Preliminaries:
Definition 2.1: A subset AcX is said to be

(i) regular open if A= int(cl(4))

(ii) semi-open[v-open] if there exists an
open[r-open]set s such that Uc A cl(U).
(iii) regular closed[semi-closed; v-closed] of
its complement is regular open[semi-open
v-open].

(iv) g-closed [rg-closed] if cl(4) U [rel(4) cU)
whenever 4c Uand U is open [r-open].

(v) vg-closed if vcl(4)cU whenever Ac U

and U is v-open
(vi) g-open[rg-open; vg-open] if its complement
is g-closed[rg-closed; vg-closed].

Definition 2.2: Let ACX. A point xeX
is said to be ®-accumulation [v-accumulation;
rg-accumulation] point of 4 if every regular-
open [v-open; rg-open] neighborhood of x
intersects 4 and the union of 4 and the set of all
o-accumulation [v-accumulation; rg-accumu-
lation] points of 4 is called w-closed [v-closed;

rg-closed] set*!",

Definition 2.3: Ac X is said to be
(i) Lindeloff[nearly-lindeloff; v-lindeloff] if

every open[regular-open; v-open]| cover of A
has a countable subcover.

(ii) Countably lindeloff[countably nearly-
lindeloff; countably v-lindeloff] if every countable
open[countable regular-open; countable v-open]
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in A has a countable sub cover.

(iii) o-lindeloff[c-nearly-lindeloff; o-v-
lindeloff] if A is the countable union of
lindeloffnearly-lindeloff; v-lindeloff] spaces
(iv) Weak almost regular [Almost regular] iff
for any point a€ A and any regular-open set
U containing a, there exist a regular-open
[an open] set V such that ae Vc cl Ve U.

3. Properties of vg-Lindeloff spaces:

Definition 3.1: Ac X is said to be
(i) vg-lindeloff if every vg-open cover of A
has a countable subcover.
(ii) Countably vg-lindeloff if every countable
vg-open cover in A has a countable sub cover.
(iii) o-vg-lindeloff if A is the countable union
of vg-lindeloff spaces' "'

Example: Any closed and bounded
subset of R with usual topology is vg-lindeloff
and R with usual topology is not vg-lindeloff.

Definition 3.2: Let Sc X. A point
xeX is said to be vg-accumulation point of S
if every vg-open neighborhood of x intersects
S. The union of S and the set of all vg-accu-
mulation points of S is called vg-closed set.

Remark 1: Every w-closed set is vg-
closed.

Theorem 3.1: Let A be r-open. AC
X is a vg-lindeloff subset of X iff the subspace

(A, ta) is vg-lindeloff.

Theorem 3.2:

(i) vg-closed subset of a (countably) vg-lindeloff
space is (countably) vg-lindeloff

(ii) vg-irresolute image of a (countably) vg-
lindeloff space is (countably) vg-lindeloff
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(iii)countable product and countable union of
(countably) vg-lindeloff spaces is (countably)
vg-lindeloff

Proof: Let {X,} be a countable family
of vg-lindeloff spaces and let X = Il X,,. Let
{U; = Iy 2 aij XaX Uqiy X ..o X Ugnj: Ugjj is vg-
open in Xj foreachi=1ton, j € I} be avg-
open cover of I, X,. Then {IIj(uj):je I} isa
vg-open cover of X;. By Assumption, there
exists a countable subfamily {IT(u;):j=1ton}
such that X; = L ITi(Uj).

Case I: If TLiX; = Uj= nﬂi(Uj) then
I1;X; is vg-lindeloff.

Case 2: If not, there exists atmost
countable 7y, h......, Iy such that Xj = Ug=s
"1;(Uys) for each le{ly, la.....; In}.
Therefore IT, Xo=Ug=1"(Uj)V Uk="(Up ...
() Uks=1ﬂ(Ujk). Hence HXU{ is vg-
lindeloff.

Remark 2: (countably) vg-lindeloffness
is a weakly hereditary property

Theorem 3.3:

(i) vg-continuous image of a (countably) vg-
lindeloff space is (countably)lindeloff
(ii) vg-continuous image of a (countably) vg-
lindeloff space is (countably)nearly-lindeloff

Definition 3.4: X is said to be locally
vg-lindeloff space if every xeX has a vg-
neighborhood whose closure is vg-lindeloff.

Note 1: v-compact space = vg-
compact space locally vg-compact space <=
locally v-compact space
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U U
Y U
v-lindeloff space = vg-lindeloff space
= locally vg-lindeloff space < locally v-
lindeloff space

Theorem 3.4: If f: X - Y is vg-
irresolute, vg-open and X is locally vg-lindeloff,
thenso is Y.

Proof: Forye Y, 3xe X3 fix)=y.
Since X is locally vg-lindeloff x has a vg-
lindeloff neighborhood V. By vg-irresolute, vg-
open of £, AV) is a vg-lindeloff neighborhood
of y. Hence Y is locally vg-lindeloff.

Corollary 3.1: If £ X — Y is vg-
irresolute, vg-open and X is vg-lindeloff, then
Y is locally vg-lindeloff.

Theorem 3.5: AC X be r-open. Then
A is locally vg-lindeloff subset of X iff the

subspace (A, 1, ) is locally vg-lindeloff.

Theorem 3.6: (i) vg-closed subset of
a locally vg-Lindeloff space is locally vg-
Lindeloff.
(ii) countable product and countable union of
locally vg-Lindeloff spaces is locally vg-
Lindeloff.

Theorem 3.7: The following are
equivalent:
(1) X is vg-lindeloff.
(ii) For every family of vg-closed sets in X
with empty intersection, there is countable
subfamily whose intersection is empty.
(iif) Every family of vg-closed sets with
countable intersection property has a non-
empty intersection.

vg-Lindeloff Space.

Theorem 3.8: Alexandroff’s
Subbase theorem for vg-lindeloff spaces:

IT X; is vg-lindeloff if and only if every X; is
vg-lindeloff.

Proof: Assume ITX; is vg-lindeloff
and Fix j€ L. Let P;: TI;X;— X; be a projection
and {V': ic I} be a vg-open cover of X;.
Then {IT;-;Xi x V; ' : ie I} is a vg-open cover
of IT;X;. Since IT, X, is vg-lindeloff, there exist
a countable subfamily such that [T, X;=u -,
"(ITixXix V). By projection P;:X, = U;=; "V,
Therefore X; is vg-lindeloff.

Converse part follows from theorem
3.2(ii)

Theorem 3.9: If A is an arbitrary vg-
lindeloff subset of X, then every infinite subset
of A has a vg-accumulation point.

Proof: Let A be an infinite subset of
a vg-lindeloff space X such that D,z(A) = ¢
and so A is vg-closed in X. If B is any infinite
subset of A, then for each be B there exists a
vg-open set Vy, containing b such that Vy
contains no point of A other than b. Now the
family {Vy: be B} forms a vg-open cover of
B. By Theorem 3.2, B itself is vg-lindeloff,
but any countable subfamily of {V,:be B} do
not cover B, which is a contradiction. Therefore
the infinite subset A of X has a vg-accumulation
point.>*

Theorem 3.10: If S is an arbitrary vg-

lindeloff subset of X, then every infinite subset
of S has a @g-accumulation point.

Proof: Consequence of theorem 3.9.
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Theorem 3.11: Let X be a vg-lindeloff
space, and let {S;} be a descending chain of
og-closed subsets of X, then N ;5 ,S, # 0.

Proof: Choose a point x,e S, for
eachn =1, 2, ... ... then x, will have a og-
accumulation point X in X, since X is vg-
lindeloff, X is rg-lindeloff and hence it is og-
closed. On the other hand, for eachn = 1:2:...

.- Xp becomes a wg-accumulation point of {xy,
Xk#15.-. ...y al$0, hence of Sy. Since each Sk is
og-closed, we know that x, € S, for each k,
hence the intersection of all S is not empty

Theorem 3.12: If f X — Y is almost
continuous, X is v-lindeloffand Y = AX)then
Y is vg-lindeloff.

Proof: Follows from Thm? 3.7, and
Note 1.

Theorem 3.14: The vg-irresolute
image of a vg-lindeloff space in any vg-
Hausdorff space is vg-closed.

Corollary 3.2: The v-irresolute image
of a v-lindeloff space in any v-Hausdorff space
is vg-closed.

4. Relation between vg-lindeloff and
lindeloff spaces:

Definition 4.0: An open base is said
to be a regular open base if the elements of
the base are regular open sets.

Definition 4.1: Ac X is said to be
Almost vg-regular iff for any point ac A and
any vg-open set U containing a, there exist a
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vg-open set V such that ae Ve ¢l Ve U.

Lemma 4.1: If X is vg-lindeloff and
semiregular then X is lindeloff.

Proof: Let {O; : ie I} be an open
cover of X. Since X is semiregular, there is a
regular open base B = we have v-open cover
{Bli: O=U;B; for each i, where Bl.c B}, which
in turn a vg-open cover. By vg-lindeloffness
of X, Xc U~ Bl = UM, Oy. Therefore
X is lindeloff,

Lemma 4.2: 1f X is vg-compact and
semiregular then X is lindeloff.

Theorem 4.1: (i) If Ac X is Almost
vg-regular and X is v-lindeloff, then cl(A) is
vg-lindeloff.

(ii) If A= X is Almost v-regular and lindeloff,
then cl(A) is vg-lindeloff,

Proof: (i) Let {U} be any v-open
cover of A and let x A be any point. For xe A
there exists a vg-open set Uy containing x =
by almost vg-regularity there exists a vg-open
set Vy such thatxe Vy < cl{V,}c U. For {Vy}
forms a vg-open coverand X is vg-lindeloff,
X=U"=1Vy.Hence cl{A}c cl{(U hi=1Vx)}
=V "= el{(Va)}c U™ - U, which implies
thatcl(A) is vg-lindeloff.

(ii) From theorem® 4.1 and Note 1 cl(A) is vg-
lindeloff.

Corollary 4.1: (i) If Ac X is Almost
vg-regular and X is v-compact, then cl(A) is
vg-lindeloff,

(ii) If Ac X is Almost v-regular and compact,
then cl(A) is vg-lindeloff,
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Theorem 4.2: Every almost v-regular
and almost lindeloff subset A of X is vg-
lindeloff.

Proof: By theorem® 4.5 and Note 1,
A is vg-lindeloff.

Theorem 4.3: Every weak almost
regular and nearly lindeloff subset A of X is
vg-lindeloff.

Proof: Follows from theorem® 4.7 and
Note 1, A is vg-lindeloff.

Corollary 4.2: (i) Every almost v-
regular and almost compact subset A of X is
vg-lindeloff.

(ii) Every weak almost regular and nearly
compact subset A of X is vg-lindeloff.

(iii) If Ac X is Almost regular and nearly
lindeloff, then cl(A) is vg-lindeloff.

(iv) IFAc X is weak almost regular and nearly
lindeloff, then cl(A) is vg-lindeloff.

Proof: (i) By theorem'" 4.2 and Note
1, A is vg-lindeloff.
(ii) By theorem'' 4.3 and Note 1, A is vg-
lindeloff.
(iii) & (iv) By theorem® 4.3 and Note 1 cl(A)
is vg-lindeloft.

Corollary 4.3: Every weak almost
regular and vg-lindeloff subset A of X is vg-
lindeloff.

Corollary 4.4: Every weak almost
regular and vg-compact subset A of X is vg-
lindeloff.

Proof: Follows from Corollary'' 4.2
and Note 1.

vg-Lindeloff Space.

Theorem 4.4: Let A be any dense
almost vg-regular subset of X such that every
vg-open covering of A is a vg-open covering
of X. Then X is almost lindeloff if and only if
X is vg-lindeloff.

Theorem 4.5: Each vg-lindeloff
metrizable space is finite.

5. Relation between vg-lindeloff and
weakly lindeloff spaces:

Theorem 3.1: 1f X is weakly lindeloff
and almost regular, then X is vg-lindeloff.

Proof: Let {V;} be any vg-open cover
of X. For each xe X, there exists iye I such
that xe V.. Since X is almost regular, there
exists a regular open set Gj such thatxe G,
cl{Gi}c Vix and G, are open. Since X is
weakly lindeloff, X =u "= 1cl{Gj}. Thus X =
U" =1 Vix. Hence X is vg-lindeloff.

Following two corollaries are immediate
consequences of above theorem and the
proofs are thus omitted.

Corollary 5.1: An almost regular
space X is weakly lindeloff if and only if X is
vg-lindeloff.

Corollary 3.2: A Hausdorff space X
is almost regular and weakly lindeloff if and
only if X is vg-lindeloff.

Theorem 5.2: If X is weakly compact
and almost regular, then X is vg-lindeloff.

Proof: By theorem'! 5.1 and Note 1,
X is vg-lindeloff.
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6. Covering properties of Weak and Strong
continuous functions.

Theorem 6.1: Almost vg-continuous
image of a (countably) vg-lindeloff space is
nearly (countably) lindeloff.

Note 2: Every almost vg-lindeloff
space is vg-lindeloff and hence locally vg-
lindeloff

Theorem 6.2: 1f f is c.vg.c.[resp:
c.r.c] surjection and X is vg-lindeloff, then Y
is closed lindeloff.

Proof: Let {Gi:ie I} be any closed
cover for Y. Since fis c.vg.c., {f"(G;)} forms

a vg-open cover for X with a countable
subcover, since X is vg-lindeloff. ForY =AX)

=" 21G;, Y is closed lindeloff,

Theorem 6.3: If fis c.vg.c., surjection.
Then the following statements hold:

(1) If X is locally vg-lindeloff, then Y is locally
closed lindeloff[locally nearly closed lindeloff;
locally mildly lindeloff.]

(i) If X is vg-closed[countably vg-closed], then
Y is nearly lindeloff[nearly countably lindeloff].
(iii) If X is vg-lindeloff, then Y is nearly closed
lindeloff; mildly closed lindeloff.’!*

Theorem 6.4: 1f fis sl.vgc. surjection
and X is vg-lindeloff, then Y is lindeloff.

Proof: Let {Gj:ie I} be any clopen
cover for Y. Since fissl.vge., { f1(G)} isa
vg-open cover for X with countable subcover
as X is vg-lindeloff. Since /s surjection, Y =
fX) = U " =G Therefore Y is lindeloff.
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Corollary 6.1: If £X— Y is sl.vgc.
surjection and X is locally vg-compact, then Y
is locally lindeloff.

Proof: Follows from theorem 6. 4 and
Note 1.

Theorem 6.5: If fX— Y is slvge.,
surjection and X is vg-lindeloff then Y is mildly
lindeloff.

Proof: Let {Uj:ie I} be clopen cover
for Y. For each x¢ X, there exists o e [ such
that f{x) € U, and Ve vGO(X. x) such that
fiVy) © Uy Since {V:ie I} is a cover of X
by vg-open sets, there exists a countable subset
lp of I such that Xcu{Vxe Ig}. Thus
Yaou{AiVy)xe lgcu {Ugy: xe Ip}. Hence
Y is mildly lindeloff,

Corollary 6.2: If fis sl.vg.c., surjection
and X is locally vg-lindeloff then Y is locally
mildly lindeloff.

Theorem 6.6: 1f f is al.c.vg.c.[resp:
al.c.r.c] surjection and X is vg-lindeloff, then
Y is nearly closed lindeloff.

Proof: Let {Gj:i€ I} be any regular-
closed cover for Y. Since fis al.c.vg.c., {f"
(Gj)} forms a vg-open cover for X and hence
have a countable subcover, since X is vg-
lindeloff. Since fis surjection, Y= AX)=U"-,
Gi. Therefore Y is nearly closed lindeloff.

Corollary 6.3: If fis al.c.vg.c.,
surjection, then the following statements hold:
(1) If X is locally vg-lindeloff, then Y is locally
nearly closed lindeloff; [locally mildly lindeloft.]
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(ii) If X is vg-closed[countably vg-closed], then
Y isnearly lindeloff[nearly countably lindeloff].

Theorem 6.7; 1f f is al.c.vg.c.,
surjection and X is vg-lindeloffthen Y is mildly
closed lindeloff{mildly lindeloff].

Conclusion

In this paper author discussed vg-
lindeloffness and studied its basic properties.
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