One modulo N gracefulness of acyclic graphs

V. RAMACHANDRAN¹ and C. SEKAR²

(Acceptance Date 20th September, 2013)

Abstract

A function f is called a graceful labelling of a graph G with q edges if f is an injection from the vertices of G to the set (0, 1, 2, ..., q) such that, when each edge xy is assigned the label /f(x) - f(y)/, the resulting edge labels are distinct. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0, 1. N, (N+1), 2N, (2N+1), ..., N(q-1), N(q-1)+1\}$ in such a way that (i) ϕ is 1-1 (ii) ϕ induces a bijection ϕ * from the edge set of G to $\{1, N+1, 2N+1, ..., N(q-1)+1\}$ where ϕ *(uv) = $/\phi(u)$ - $\phi(v)/$. In this paper we prove that the acyclic graphs viz. Paths, Caterpillars, Stars and $S_{2,n} \subseteq S_{2,n}$ are one modulo N graceful for all positive integer N; Lobsters, Banana trees and Rooted tree of height two are one modulo N graceful for N > 1. where $S_{m,n} \subseteq S_{m,n}$ is a graph obtained by identifying one pendant vertex of each $S_{m,n}$. This is a fire cracker of subdivisioned stars.

Key words: Graceful, modulo N graceful, Path, $S_{m,n}$, $S_{m,n}$, $S_{m,n}$, $S_{m,n}$, Caterpillar, Star, Lob-ster, Banana tree and Rooted tree of height two.

$\textbf{AMS Subject Classification}\ (2010):05C78$

1. Introduction

S.W. Golomb¹ introduced graceful labelling. Odd gracefulness is introduced by R.B. Gnanajothi². C. Sekar⁶ intoduced one modulo three graceful labelling. In this paper

we introduce the concept of one modulo N graceful where N is a positive integer. In the case N = 2, the labelling is odd graceful and in the case N = 1 the labelling is graceful. We prove that the acyclic graphs like Paths, Caterpillars, Stars and $S_{2,n} \oplus S_{2,n}$, are one

modulo N graceful where N is a positive integer, whereas Lobsters, Banana trees and Rooted tree of height two are one modulo N graceful for N > 1.

2 Main Results

Definition 2.1. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0,1,N,(N+1),2N,(2N+1),...,N(q-1),N(q-1)+1\}$ in such a way that (i) ϕ is 1-1 (ii) ϕ induces a bijection ϕ^* from the edge set of G to $\{1,N+1,2N+1,...,N(q-1)+1\}$ where ϕ^* $(uv)=|\phi(u)-\phi(v)|$.

Definition 2.2. Consider $S_{m,n}$ (a star with n spokes in which each spoke is a path of length m) $S_{m,n} \oplus S_{m,n}$ is a graph obtained by identifying one pendant vertex of each $S_{m,n}$. This is a fire cracker of subdivisioned stars³.

Definition 2.3. Caterpillar is a tree with the property that the removal of its end points or pendant vertices (vertices with degree. 1) leaves a path.

Definition 2.4. A banana tree is a graph obtained by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the stars).

Definition 2.5. A lobster is a tree with the property that the removal of the end points (pendant vertices) leaves a caterpillar⁴.

Theorem 2.6. Every path P_n is one

modulo N graceful⁵ (where N is a positive integer).

Proof: Case(i) n is odd.

Let n = 2k + 1, $k \ge 1$. Let $u_1, u_2,...$, u_n be the vertices P_n

Define

$$\phi(u_{2i-1}) = N(i-1)$$
 for $i = 1, 2, 3, ..., k + 1$
 $\phi(u_{2i}) = 2Nk \cdot (N-1) + N(i-1)$ for $i = 1, 2, 3, ..., k$

Clearly ϕ is 1 - 1 and ϕ defines a one modulo N graceful labelling of P_n .

Example 2.7. One modulo 5 graceful labelling of P_{11}

Example 2.8. Graceful labelling of P_7

Case (ii) n is even. Let n = 2kDefine

$$\phi(u_{2i-1}) = N(i-1)$$
 for $i = 1, 2, 3, ..., k$
 $\phi(u_{2i}) = 2Nk - (2N - 1) - N(i - 1)$ for $i = 1, 2, 3, ..., k$

Clearly ϕ is 1-1 and ϕ defines a one modulo N graceful labelling of P_n .

Example 2.9. One modulo 4 graceful labelling of P_8

Example 2.10. Graceful labelling of P_{10}

Theorem 2.11. Caterpillars are one modulo N graceful (where N is a positive integer).

Proof: Let G be a caterpillar.

Let $u_1, u_2, u_3, \ldots, u_m$ be the vertices of the caterpillar having degree at least 2 such that $u_i, u_{i+1} \in E(G)$.

Let $v_1, v_2, v_3, \ldots, v_n$ be the pendant vertices of the caterpillar. This caterpillar has m + n vertices and m + n - 1 edges. Caterpillar is a bipartite graph in which the two independent vertex sets are

 $V_1(G) = \{u_1, u_2, u_3, \dots \text{ and all the pendant vertices } v_j's \text{ adjacent to } u_2, u_4, u_6, \dots\}$

 $V_2(G) = \{u_2, u_4, u_6, \dots \text{ and all the pendant vertices } v_i's \text{ adjacent to } u_1, u_3, u_5, \dots \}$

Reorder the elements of $V_1(G)$ as follows:

 u_1 , pendant vertices v_j 's adjacent to u_2 , u_3 , pendant vertices v_j 's adjacent u_4 , u_5 and so on. Similarly reorder the elements of $V_2(G)$ as follows: pendant vertices adjacent to u_1 , u_2 , pendant vertices v_j 's adjacent u_3 , u_4 and so on.

Label the elements of $V_1(G)$ as N(m + n)-(2N-1), N(m+n)-(3N-1), N(m+n)-(4N-1)... in order and the elements of $V_2(G)$ as 0, N, 2N, 3N,... in order. Clearly this labeling is one modulo N graceful.

Clearly Caterpillars are one modulo *N* graceful labelling.

Example 2.12. One modulo 4 graceful labelling Caterpillars.

Example 2.13. Odd graceful labelling Caterpillars.

Theorem 2.14. Stars S_n are one modulo N graceful (where N is a positive integer).

Proof: Let v_0 be the centre of the star and v_1 , v_2 , v_3 ,..., v_n be the pendant vertices of S^n . Define $\phi(u_0) = N(n-1) + 1$

$$\phi(v_i) = N(i-1)$$
 for $i = 1, 2, 3, ..., n$

Clearly ϕ is 1-1 and ϕ defines a one modulo N graceful labelling of S_n .

 $Example \ \ 2.15. \ \ One \ \ modulo \ \ 8$ graceful labelling of S_8

Theorem 2.16. $S_{2,n} \subseteq S_{2,n}$ is one modulo N graceful for $n \ge 3$ (where N is a positive integer).

Proof: Case (i)
$$n = 3$$

One modulo 7 gracefulness of $S_{2,3} \oplus S_{2,3}$ is given below

Let u_0 be the centre of first sub divisioned star $S_{2,n}$ and v_0 be the centre of second sub divisioned star $S_{2,n}$. Let $u_1, u_2, u_3, ..., u_n, u'_1. u'_2, u'_3, ... u'_n$ be the vertices of first $S_{2,n}$ where u_i and u'_i are adjacent. Let $v_1, v_2, v_3, ..., v_n, v'_1. v'_2, v'_3, ... v'_n$ be the vertices of second $S_{2,n}$ where v_i and v'_i are adjacent. Identify u'_n and v'_n .

Define
$$\phi(u_0) = 0$$

 $\phi(u_n) = 4Nn - (N - 1)$
 $\phi(u'_n) = \phi(v'_n) = N$
 $\phi(v_n) = 4Nn - (2N - 1)$
 $\phi(v_0) = 2N$
 $\phi(v_i) = 4Nn - (3N - 1) - N(i - 1)$ for $i = 1, 2, 3, ..., n - 1$
 $\phi(u_i) = 3Nn - (4N - 1) - N(i - 1)$ for $i = 1, 2, 3, ..., n - 1$
 $\phi(u'_i) = N(n - 1) + N(i - 1)$ for $i = 1, 2, 3, ..., n - 1$
 $\phi(v'_i) = 2Nn + N + N(i - 1)$ for $i = 1, 2, 3, ..., n - 1$

Clearly ϕ is 1-1 and ϕ defines a one modulo N graceful labelling of $S_{2,n} \subseteq S_{2,n}$.

One modulo 5 graceful labelling of $S_{2,10} \oplus S_{2,10}$ is given below

Theorem 2.17. Let $S_{m,n}$ stand for a star with n spokes in which each spoke is a path of length m. Then $S_{m,n}$ is one modulo N graceful for all m and n (where N is a positive integer).

Proof: Let v_0 be the centre of the star. Let v_i^j , $1 \le i \le m$, j = 1, 2, ..., n be the other vertices of vortices of the j th spoke of length m.

Case (i) N=1.

It has been proved in⁶ that $S_{m,n}$ is graceful for all m and n

Case (ii) N > 1.

Subcase (ii)(a) m is odd and n is odd. Let m = 2r + 1 and n = 2s + 1.

Define $\phi(v_0) = 0$

$$\phi(v_{2i+1}^{(j)}) = N(2r+1)(2s+1)-(N-1)-Ni(2s+1)-$$

$$N(j-1)$$
 for $i = 0, 1, 2, ..., r$ and $j = 1, 2, 3, ..., 2s + 1$

$$\phi(v_{2i}^{(j)}) = 4Ns + N + N(i-1)(2s+1)-2N(j-1)$$
 for $i = 1, 2, ..., r$ and $j = 1, 1, 3, ..., 2s + 1$

Clearly ϕ is 1 - 1 and ϕ defines a one modulo N graceful labelling of $S_{m,n}$.

Example 2.18. One modulo 5 graceful labelling of $S_{7,5}$

Example 2.19. One modulo 7 graceful labelling of $S_{5.5}$

Subcase (ii)(b) m is even and n is odd. Let m = 2r and n = 2s + 1.

Define $\phi(v_0) = 0$

$$\phi(v_{2i+1}^{(j)}) = 2Nr(2s+1)-(N-1)-Ni(2s+1)-N(j-1)$$
 for $i = 0,1,2,...,r-1$ and $j = 1,2,3,...,2s+1$
$$\phi(v_{2i}^{(j)}) = 4Ns + N(i-1)(2s+1) - 2N(j-1)$$
 for $i = 1, 2,..., r$ and $j = 1, 2, 3,...,2s+1$

Clearly ϕ is 1 - 1 and ϕ defines a one modulo N graceful labelling of $S_{m,n}$.

 $Example \quad 2.20. \quad {\rm Odd \quad graceful} \\ {\rm labelling \ of \ } S_{4,7}$

Example 2.21. One modulo 4 graceful labelling of $S_{6,5}$

Subcase (ii)(c) m is odd and n is even. Let m = 2r + 1 and n = 2s. Define $\phi(v_0) = Nr$ $\phi(v_{2i+1}^{(j)}) = 2Ns(2r+1)-Nr + Ni-(N-1) \quad \text{for } i = 0,1,2,...,r$ $\phi(v_{2i}^{(j)}) = Nr - N - N(i-1) \quad \text{for } i = 1,2,...,r$ $\phi(v_{2i+1}^{(j)}) = 2Ns(2r+1)-Nr-(2N-1)-Ni(2s-1)-N(j-2) \quad \text{for } i = 1,2,...,r \text{ and } j = 2,3,...,2s$ $\phi(v_{2i}^{(j)}) = Nr + N + 2N(2S-2) + N(i-1)(2s-1)-2N(j-2) \quad \text{for } i = 1,2,...,r \text{ and } j = 2,3,...,2s$

Example 2.22. One modulo 6 graceful labelling of $S_{7,6}$

Clearly ϕ is 1 - 1 and ϕ defines a one modulo

N graceful labelling of $S_{m,n}$.

Example 2.23. One modulo 8 graceful labelling of $S_{5.4}$

Subcase (ii)(d) m is even and n is even. Let m = 2r and n = 2s.

Define $\phi(v_0) = Nr$

$$\phi(v_{2i+1}^{(j)}) = 4 Nrs - Nr + 1 + Ni \text{ for } i = 0,1,2,...,r-1$$

$$\phi(v_{2i}^{(j)}) = Nr - N - N(i - 1) \text{ for } i = 1,2,..., \text{ r}$$

$$\phi(v_{2i+1}^{(j)}) = 4Nrs - Nr - (N-1) - Ni(2s-1) - N(j-2)$$
for $i = 0,1,2,...,r - 1$ and $j = 2,3,...,2s$

$$\phi(v_{2i}^{(j)}) = Nr + N + 2N(2S-2) + N(i-1)(2s-1) - 2N(j-2) \text{ for } i = 1,2,...,r \text{ and } j = 2,3,...,2s$$
Clearly ϕ is $1 - 1$ and ϕ defines a one modulo N graceful labelling of $S_{m,n}$.

Example 2.24. One modulo 10 graceful labelling of $S_{6.6}$

Example 2.25. One modulo 5 graceful labelling of $S_{10.6}$

Theorem 2.26. Lobsters are one modulo N graceful (where N is a positive integer with N > 1).

Proof: Let $u_1, u_2, u_3, ..., u_m$ be the first level vertices. Let $v_1, v_2, v_3, ..., v_n$ be the second level vertices. Let $w_1, w_2, w_3, ..., w_r$ be the third level vertices adjacent to v_i' s in order. Let $x_1, x_2, x_3, ..., x_s$ be the fourth level vertices adjacent to u_i' s in order. Since total number of vertices is m + n + r + s, this lobster has m + n + r + s - 1 edges.

Label the first level vertices u_1 , u_2 , u_3 ,..., u_m respectively by N(m + n + r + s - 1) - (N-1), N(m + n + r + s - 1) - (2N - 1),...., N(m + n + r + s - 1) - Nm + 1.

Label the second level vertices v_1 , v_2 , v_3 ,..., v_n respectively by 0, N, 2N, 3N,..., N(n-1). Label the third level vertices w_1 , w_2 , w_3 ,..., w_r as follows.

If w_i is adjacent to v_k put $f(w_i) = f(v_k) + 1 + N(i - 1)$, k is arbitrary.

Label the fourth level vertices x_1 , x_2 , x_3 ,..., x_s as follows.

$$f(x_i)=f(u_k) - N(r-1) - (N+1) - N(i-1)$$
 when u_k is adjacent to x_i . Clearly f is one-one and f gives a one modulo N graceful labelling.

Example 2.27. One modulo 5 graceful labelling of lobsters

Example 2.28. One modulo 7 graceful labelling of lobsters.

Theorem 2.29. A banana tree is one modulo N graceful (where N is a positive integer with N > 1).

Proof: Let there be k stars S_{n1} , $S_{n2}, S_{n3}, \ldots, S_{nk}$. Connect a vertex v to one leaf of each star. Rearrange the stars in descending order of the number of leaves. Without loss of generality we assume that $n_1 \ge n_2 \ge \ldots \ge n_k$.

Let $u_1, u_2, u_3, ..., u_k$ be respectively the vertices of $S_{n1}, S_{n2}, S_{n3}, ..., S_{nk}$ connecting the vertex v. Let $u_1^{(0)}, u_2^{(0)}, u_3^{(0)}, ..., u_k^{(0)}$ be respectively the centre of $S_{n1}, S_{n2}, S_{n3}, ..., S_{nk}$. Let $u_i^{(j)}, j = 1, 2, ..., n_i$ -1 $(1 \le i \le k)$ be the other vertices of the stars $S_{ni}(1 \le i \le k)$. This banana tree has $k + n_1 + n_2 + ..., +n_k$ edges and $k + 1 + n_1 + n_2 + ..., +n_k$ vertices. Define $\phi(v) = 0$

 $\phi(u_i)=N(k+n_1+n_2+....+n_k)-(N-1)-N(k-i)$ for i=1,2,3,...,k

 $\phi(u_i^{(0)}) = N+2N(i-1)$ for i = 1, 2, 3, ..., k $\phi(u_i^{(1)}) = N(k+n_1+n_2+...+n_k)-(N-1)-2Nk+Ni$ for i = 1, 2, 3, ..., k

 $\phi(u_i^{(2)}) = \phi(u_i^{(1)}) - Nk$ for i = 1, 2, 3, ..., k $\phi(u_i^{(3)}) = \phi(u_i^{(2)}) - Nr$ if $u_i^{(2)}$ exist for i = 1, 2, 3, ..., r.

In general

 $\phi(u_i^{(j+1)}) = \phi(u_i^{(j)})$ -Ns if $u_i^{(j)}$ exist for i = 1,2,3,...,s.

This process will stop when the edges have the labels $1,N+1,2N+1,...,N(k+n_1+n_2+....+n_k)$ - (N-1)

Clearly ϕ is 1- 1 and ϕ defines a one modulo N graceful labelling of banana tree.

Example 2.30. One modulo 4 graceful labelling of banana tree.

Example 2.31. Odd graceful labelling of banana tree.

Theorem 2.32. Rooted trees of height two are one modulo N graceful (where N is a positive integer with N > 1).

Proof: Let u_0 be the root. Let $u_1, u_2, u_3, ..., u_n$ be the vertices adjacent to u_0 . Let $u_i^{(j)}$, $j = 1, 2, ..., k_i$ be the pendant vertices adjacent to u_i , i = 1, 2, ..., n. This rooted tree has $n + k_1 + k_2 + \cdots + k_n$ edges and $n + 1 + k_1 + k_2 + \cdots + k_n$ vertices

 $\phi(u_i) = N(n+k_1+k_2 + \dots + k_n)-(N-1)-N(i-1)$ for $i = 1,2,3,\dots,n$

 $\phi(u_1^{(j)}) = N(n + k_1 + k_2 + \dots + k_n) - N - N(j - 1)$ for $j = 1, 2, 3, \dots, k_1$

 $\phi(u_{i+1}^{(j)}) = \phi(u_i^{(ki)}) - 2N - N(j-1)$ for i = 1, $j = 1, 2, 3, ..., k_2$ and $i = 2, j = 1, 2, 3, ..., k_3, ...,$

 $j = 1, 2, 3, ..., k_2$ and i = 2, j = 1, $i=n-1, j=1,2,3,...,k_n$

Define $\phi(u_0) = 0$

Clearly ϕ is 1-1 and ϕ defines a one

modulo N graceful labelling of Rooted trees of height two.

Example 2.33. One modulo 6 graceful labelling of Rooted trees of height two.

Example 2.34. One modulo 9 graceful labelling of Rooted trees of height two.

References

- 1. S.W. Golomb, How to number a graph in Graph theory and computing R.C. Read, ed., Academic press, New York 23-27 (1972).
- 2. R.B. Gnanajothi, Topics in Graph theory, Ph.D. Thesis, Madurai Kamaraj University, (1991).
- 3. Joseph A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 18 (2011), #DS6.
- 4. K.M. Kathiresan and S. Amutha, Arbitrary supersubdivisions of stars are graceful, *Indian J. Pure Appl. Math.*, 35(1), 81-84 (2004).
- 5. A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs. (International Symposium, Rome July 1966) Gordom and Breach, N. Y. and Dunod paris 349-355 (1967).
- 6. C. Sekar, Studies in Graph theory, Ph.D. Thesis, Madurai Kamaraj University (2002).