One modulo \mathbf{N} gracefulness of acyclic graphs

V. RAMACHANDRAN ${ }^{1}$ and C. SEKAR ${ }^{2}$

(Acceptance Date 20th September, 2013)

Abstract

A function f is called a graceful labelling of a graph G with q edges if f is an injection from the vertices of G to the set $(0,1,2, \ldots, q)$ such that, when each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0,1 . N,(N+1), 2 N,(2 N+1), \ldots, N(q-1) . N(q-1)+1\}$ in such a way that $(i) \phi$ is $1-1$ (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N+1,2 N+1, \ldots, N(q-1)+1\}$ where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$. In this paper we prove that the acyclic graphs viz. Paths, Caterpillars, Stars and $S_{2, n} \Theta$ $S_{2, n}$ are one modulo N graceful for all positive integer N; Lobsters, Banana trees and Rooted tree of height two are one modulo N graceful for $N>1$. where $S_{m, n} \Theta S_{m, n}$ is a graph obtained by identifying one pendant vertex of each $S_{m, n}$. This is a fire cracker of subdivisioned stars.

Key words : Graceful, modulo N graceful, Path, $S_{m, n}, S_{m, n}$ $\underline{\Theta} S_{m, n}$, Caterpillar, Star, Lob-ster, Banana tree and Rooted tree of height two.

AMS Subject Classification (2010):05C78

1. Introduction

S.W. Golomb ${ }^{1}$ introduced graceful labelling. Odd gracefulness is introduced by R.B. Gnanajothi ${ }^{2}$. C. Sekar ${ }^{6}$ intoduced one modulo three graceful labelling. In this paper
we introduce the concept of one modulo N graceful where N is a positive integer. In the case $N=2$, the labelling is odd graceful and in the case $N=1$ the labelling is graceful. We prove that the acyclic graphs like Paths, Caterpillars, Stars and $S_{2, n} \underline{\ominus} S_{2, n}$, are one
modulo N graceful where N is a positive integer, whereas Lobsters, Banana trees and Rooted tree of height two are one modulo N graceful for $N>1$.

2 Main Results

Definition 2.1. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0,1, N,(N+1), 2 N$, $(2 N+1), \ldots, N(q-1), N(q-1)+1\}$ in such a way that (i) ϕ is $1-1$ (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N$ $+1,2 N+1, \ldots, N(q-1)+1\}$ where $\phi^{*}(u v)$ $=|\phi(u)-\phi(v)|$.

Definition 2.2. Consider $S_{m, n}$ (a star with n spokes in which each spoke is a path of length m) $S_{m, n} \underline{\ominus} S_{m, n}$ is a graph obtained by identifying one pendant vertex of each $S_{m, n}$. This is a fire cracker of subdivisioned stars ${ }^{3}$.

Definition 2.3. Caterpillar is a tree with the property that the removal of its end points or pendant vertices (vertices with degree. 1) leaves a path.

Definition 2.4. A banana tree is a graph obtained by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the stars).

Definition 2.5. A lobster is a tree with the property that the removal of the end points (pendant vertices) leaves a caterpillar ${ }^{4}$.

Theorem 2.6. Every path P_{n} is one
modulo N graceful ${ }^{5}$ (where N is a positive integer).

Proof: Case (i) n is odd.
Let $n=2 k+1, k \geq 1$. Let u_{1}, u_{2}, \ldots, u_{n} be the vertices P_{n}

Define
$\phi\left(u_{2 i-1}\right)=N(i-1)$ for $i=1,2,3, \ldots, k+1$
$\phi\left(u_{2 i}\right)=2 N k-(N-1)+N(i-1)$ for $i=1,2,3, \ldots, k$

Clearly ϕ is $1-1$ and ϕ defines a one modulo N graceful labelling of P_{n}.

Example 2.7. One modulo 5 graceful labelling of P_{11}

Example 2.8. Graceful labelling of P_{7}

Case (ii) n is even.
Let $n=2 k$
Define
$\phi\left(u_{2 i-1}\right)=N(i-1) \quad$ for $i=1,2,3, \ldots, k$
$\phi\left(u_{2 i}\right)=2 N k-(2 N-1)-N(i-1) \quad$ for $i=1$, $2,3, \ldots, k$
Clearly ϕ is $1-1$ and ϕ defines a one modulo N graceful labelling of P_{n}.

Example 2.9. One modulo 4 graceful labelling of P_{8}

Example 2.10. Graceful labelling
of P_{10}

Theorem 2.11. Caterpillars are one modulo N graceful (where N is a positive integer).

Proof: Let G be a caterpillar.
Let $u_{1}, u_{2}, u_{3}, \ldots ., u_{m}$ be the vertices of the caterpillar having degree at least 2 such that $u_{i}, u_{i+1} \in \mathrm{E}(\mathrm{G})$.
Let $v_{1}, v_{2}, v_{3}, \ldots ., v_{n}$ be the pendant vertices of the caterpillar. This caterpillar has $m+n$ vertices and $m+n-1$ edges. Caterpillar is a bipartite graph in which the two independent vertex sets are
$V_{1}(G)=\left\{u_{1}, u_{2}, u_{3}, \ldots\right.$ and all the pendant vertices $v_{j}^{\prime} s$ adjacent to $\left.u_{2}, u_{4}, u_{6} \ldots\right\}$
$V_{2}(G)=\left\{u_{2}, u_{4}, u_{6}, \ldots\right.$ and all the pendant vertices $v_{j}^{\prime} s$ adjacent to $\left.u_{1}, u_{3}, u_{5}, \ldots\right\}$

Reorder the elements of $V_{1}(G)$ as follows:
u_{1}, pendant vertices $v_{j}^{\prime} s$ adjacent to u_{2}, u_{3}, pendant vertices $v_{j}^{\prime} s$ adjacent u_{4}, u_{5} and so on. Similarly reorder the elements of $V_{2}(G)$ as follows: pendant vertices adjacent to u_{1}, u_{2}, pendant vertices $v_{j}^{\prime} s$ adjacent u_{3}, u_{4} and so on.
Label the elements of $V_{1}(G)$ as $N(m+n)$ $(2 N-1), N(m+n)-(3 N-1), N(m+n)-(4 N-$ 1)... in order and the elements of $V_{2}(G)$ as $0, N, 2 N, 3 N, \ldots$ in order. Clearly this labeling is one modulo N graceful.

Clearly Caterpillars are one modulo N graceful labelling.

Example 2.12. One modulo 4 graceful labelling Caterpillars.

Example 2.13. Odd graceful labelling Caterpillars.

Theorem 2.14. Stars S_{n} are one modulo N graceful (where N is a positive integer).

Proof: Let v_{0} be the centre of the star and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendant vertices of $S n$. Define $\phi\left(u_{0}\right)=N(n-1)+1$

$$
\phi\left(v_{i}\right)=N(i-1) \quad \text { for } \mathrm{i}=1,2,3, \ldots, n
$$

Clearly ϕ is $1-1$ and ϕ defines a one modulo N graceful labelling of S_{n}.

Example 2.15. One modulo 8 graceful labelling of S_{8}

Theorem 2.16. $S_{2, \mathrm{n}} \underline{\ominus} S_{2, n}$ is one modulo N graceful for $n \geq 3$ (where N is a positive integer).

$$
\text { Proof: } \quad \text { Case (i) } \quad n=3
$$

One modulo 7 gracefulness of $S_{2,3} \underline{\ominus} S_{2,3}$ is given below

Case (ii) $n \geq 4$
Let u_{0} be the centre of first sub divisioned star $S_{2, n}$ and v_{0} be the centre of second sub divisioned star $S_{2, n}$. Let $u_{1}, u_{2}, u_{3}, \ldots$, $u_{n}, u_{1}^{\prime} \cdot u_{2}^{\prime}, u_{3}^{\prime}, \ldots . u_{n}^{\prime}$ be the vertices of first $S_{2, n}$ where u_{i} and u_{i}^{\prime} are adjacent. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$, $\mathrm{v}_{1}^{\prime} \cdot v_{2}^{\prime}, v_{3}^{\prime}, \ldots . v_{n}^{\prime}$ be the vertices of second $S_{2, n}$ where v_{i} and v_{i}^{\prime} are adjacent. Identify u_{n}^{\prime} and v_{n}^{\prime}.

Define $\phi\left(u_{0}\right)=0$
$\phi\left(u_{n}\right)=4 N n-(N-1)$
$\phi\left(u_{n}^{\prime}\right)=\phi\left(v_{n}^{\prime}\right)=N$
$\phi\left(v_{n}\right)=4 N n-(2 N-1)$
$\phi\left(v_{0}\right)=2 N$
$\phi\left(v_{i}\right)=4 N n-(3 N-1)-N(i-1)$ for $i=1,2,3, \ldots, n-1$
$\phi\left(u_{i}\right)=3 N n-(4 \mathrm{~N}-1)-N(i-1)$ for $i=1,2,3, \ldots, \mathrm{n}-1$
$\phi\left(u_{i}^{\prime}\right)=N(n-1)+N(i-1)$ for $i=1,2,3, \ldots, n-1$
$\phi\left(v_{i}^{\prime}\right)=2 N n+N+N(i-1)$ for $i=1,2,3, \ldots, n-1$

Clearly ϕ is $1-1$ and ϕ defines a one modulo N graceful labelling of $S_{2, n} \underline{\ominus} S_{2, n}$.

One modulo 5 graceful labelling of $S_{2,10} \underline{\ominus} S_{2,10}$ is given below

Theorem 2.17. Let $S_{m, n}$ stand for a star with n spokes in which each spoke is a path of length m. Then $S_{m, n}$ is one modulo N graceful for all m and n (where N is a positive integer).

Proof: Let v_{0} be the centre of the star. Let $v_{i}^{j}, 1 \leq i \leq m, j=1.2, \ldots, n$ be the other vertices of vortices of the j th spoke of length m.

Case (i) $N=1$.
It has been proved in ${ }^{6}$ that $S_{m, n}$ is graceful for all m and n
Case (ii) $N>1$.
Subcase (ii)(a) m is odd and n is odd. Let $m=2 r+1$ and $n=2 s+1$.
Define $\phi\left(v_{0}\right)=0$
$\phi\left(v_{2 i+1}^{(j)}\right)=N(2 r+1)(2 s+1)-(N-1)-N i(2 s+1)-$
$N(j-1)$ for $\mathrm{i}=0,1,2, \ldots, r$ and $j=1,2,3, \ldots, 2 s+1$
$\phi\left(v_{2 i}^{(j)}\right)=4 N s+N+N(i-1)(2 s+1)-2 N(j-1)$ for
$i=1,2, \ldots, r$ and $\mathrm{j}=1,1,3, \ldots, 2 s+1$
Clearly ϕ is $1-1$ and ϕ defines a one modulo N graceful labelling of $S_{m, n}$.

Example 2.18. One modulo 5 graceful labelling of $S_{7,5}$

Example 2.19. One modulo 7 graceful labelling of $S_{5,5}$

Subcase (ii)(b) m is even and n is odd. Let $m=2 r$ and $n=2 s+1$.
Define $\phi\left(v_{0}\right)=0$
$\phi\left(v_{2 i+1}^{(j)}\right)=2 N \mathrm{r}(2 s+1)-(N-1)-N i(2 s+1)-N(j-1)$ for $i=0,1,2, \ldots, r-1$ and $j=1,2,3, \ldots, 2 s+1$
$\phi\left(v_{2 i}^{(j)}\right)=4 N s+N(i-1)(2 s+1)-2 N(j-1)$ for $i=1,2, \ldots, r$ and $j=1,2,3, \ldots, 2 s+1$

Clearly ϕ is 1-1 and ϕ defines a one modulo N graceful labelling of $S_{\mathrm{m}, \mathrm{n}}$.

Example 2.20. Odd graceful labelling of $S_{4,7}$

Example 2.21. One modulo 4 graceful labelling of $S_{6,5}$

Subcase $(i i)(c) m$ is odd and n is even. Let $m=2 r+1$ and $n=2 s$.
Define $\phi\left(v_{0}\right)=N r$
$\phi\left(v_{2 i+1}^{(j)}\right)=2 N s(2 r+1)-N r+N i-(N-1)$ for $i=0,1,2, \ldots, r$
$\phi\left(v_{2 i}^{(j)}\right)=N r-N-N(i-1) \quad$ for $i=1,2, \ldots, r$
$\phi\left(v_{2 i+1}^{(j)}\right)=2 N s(2 r+1)-N r-(2 N-1)-N i(2 s-1)-$
$N(j-2) \quad$ for $i=1,2, \ldots, r$ and $j=2,3, \ldots, 2 s$
$\phi\left(v_{2 i}^{(j)}\right)=N r+N+2 N(2 S-2)+N(i-1)(2 s-1)-$
$2 N(j-2) \quad$ for $i=1,2, \ldots, r$ and $j=2,3, \ldots, 2 s$
Clearly ϕ is 1-1 and ϕ defines a one modulo N graceful labelling of $\mathrm{S}_{\mathrm{m}, \mathrm{n}}$.

Example 2.22. One modulo 6 graceful labelling of $S_{7,6}$

Example 2.23. One modulo 8 graceful labelling of $S_{5,4}$

Subcase (ii)(d) m is even and n is even. Let $m=2 r$ and $n=2 s$.
Define $\phi\left(v_{0}\right)=N r$
$\phi\left(v_{2 i+1}^{(j)}\right)=4 N r s-N r+1+N i$ for $i=0,1,2, \ldots, r-1$
$\phi\left(v_{2 i}^{(j)}\right)=N r-N-N(i-1)$ for $i=1,2, \ldots, \mathrm{r}$
$\phi\left(v_{2 i+1}^{(j)}\right)=4 N r s-N r-(N-1)-N i(2 s-1)-N(j-2)$
for $i=0,1,2, \ldots, r-1$ and $j=2,3, \ldots, 2 s$
$\phi\left(v_{2 i}^{(j)}\right)=N r+N+2 N(2 S-2)+N(i-1)(2 s-1)-$
$2 N(j-2)$ for $i=1,2, \ldots, r$ and $j=2,3, \ldots, 2 s$
Clearly ϕ is $1-1$ and ϕ defines a one modulo N graceful labelling of $S_{m, n}$.

Example 2.24. One modulo 10 graceful labelling of $S_{6,6}$

Example 2.25. One modulo 5 graceful labelling of $S_{10,6}$

Theorem 2.26. Lobsters are one modulo N graceful (where N is a positive integer with $N>1$).

Proof: Let $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$ be the first level vertices. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the second level vertices. Let $w_{1}, w_{2}, w_{3}, \ldots, w_{r}$ be the third level vertices adjacent to $v_{i}^{\prime} \mathrm{s}$ in order. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{s}$ be the fourth level vertices adjacent to $u_{i}^{\prime} \mathrm{s}$ in order. Since total number of vertices is $m+n+r+s$, this lobster has $m+n+r+s-1$ edges.

Label the first level vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$ respectively by $N(m+n+r+s-1)-(N-1)$, $N(m+n+r+s-1)-(2 N-1), \ldots . ., N(m+$ $n+r+s-1)-N m+1$.

Label the second level vertices v_{1}, $v_{2}, v_{3}, \ldots, v_{n}$ respectively by $0, N, 2 N, 3 N, \ldots$, $N(n-1)$. Label the third level vertices w_{1}, $w_{2}, w_{3}, \ldots, w_{r}$ as follows.

If w_{i} is adjacent to v_{k} put $f\left(w_{i}\right)=f\left(v_{k}\right)$ $+1+N(i-1), \mathrm{k}$ is arbitrary.

Label the fourth level vertices x_{1}, x_{2}, x_{3}, \ldots, x_{s} as follows.

$$
f\left(x_{i}\right)=f\left(u_{k}\right)-N(r-1)-(N+1)-N(i-1)
$$

when u_{k} is adjacent to x_{i}. Clearly f is oneone and f gives a one modulo N graceful labelling.

Example 2.27. One modulo 5 graceful lahelling of lohsters

Example 2.28. One modulo 7 graceful labelling of lobsters.

Theorem 2.29. A banana tree is one modulo N graceful (where N is a positive integer with $N>1$).

Proof: Let there be k stars $S_{n 1}$, $S_{n 2}, S_{n 3}, \ldots ., S_{n k}$. Connect a vertex v to one leaf of each star. Rearrange the stars in descending order of the number of leaves. Without loss of generality we assume that $n_{1} \geq n_{2} \geq \ldots \geq n_{k}$.

Let $u_{1}, u_{2}, u_{3}, \ldots, u_{k}$ be respectively the vertices of $S_{n 1}, S_{n 2}, S_{n 3}, \ldots, S_{n k}$ connecting the vertex v. Let $u_{1}^{(0)}, u_{2}^{(0)}, u_{3}^{(0)}, \ldots ., u_{k}^{(0)}$ be respectively the centre of $S_{n 1}, S_{n 2}, S_{n 3}, \ldots, S_{n k}$. Let $u_{i}^{(j)}, j=1,2, \ldots, n_{i}-1(1 \leq i \leq k)$ be the other vertices of the stars $S_{n i}(1 \leq i \leq k)$. This banana tree has $k+n_{1}+n_{2}+\ldots,+n_{k}$ edges and $k+1+n_{1}+n_{2}+\ldots,+n_{k}$ vertices.
Define $\phi(v)=0$
$\phi\left(u_{i}\right)=N\left(k+n_{1}+n_{2}+\ldots+n_{k}\right)-(N-1)-N(k-i)$
for $i=1,2,3, \ldots, k$
$\phi\left(u_{i}^{(0)}\right)=N+2 N(i-1) \quad$ for $i=1,2,3, \ldots, k$
$\phi\left(u_{i}^{(1)}\right)=N\left(k+n_{1}+n_{2}+\ldots+n_{k}\right)-(N-1)-2 N k+N i$ for $i=1,2,3, \ldots, k$
$\phi\left(u_{i}^{(2)}\right)=\phi\left(u_{i}^{(1)}\right)-N k \quad$ for $i=1,2,3, \ldots, k$ $\phi\left(u_{i}^{(3)}\right)=\phi\left(u_{i}^{(2)}\right)-N r \quad$ if $u_{i}^{(2)}$ exist for $i=1,2,3, \ldots, r$.
In general
$\phi\left(u_{i}^{(j+1)}\right)=\phi\left(u_{i}^{(j)}\right)-N s$ if $u_{i}^{(j)}$ exist for $i=$ 1,2,3,...,s.
This process will stop when the edges have the labels $1, N+1,2 N+1, \ldots, N\left(k+n_{1}+n_{2}+\ldots .+n_{k}\right)$ - (N-1)

Clearly ϕ is 1-1 and ϕ defines a one modulo N graceful labelling of banana tree.

Example 2.30. One modulo 4 graceful labelling of banana tree.

Example 2.31. Odd graceful labelling of banana tree.

Theorem 2.32. Rooted trees of height two are one modulo N graceful (where N is a positive integer with $N>1$).

Proof: Let u_{0} be the root. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices adjacent to u_{0}. Let $u_{i}^{(j)}, j=1,2, \ldots, k_{i}$ be the pendant vertices adjacent to $u_{i}, i=1,2, \ldots, n$. This rooted tree has $n+k_{1}+k_{2}+\cdots+k_{n}$ edges and $n+1+k_{1}$ $+k_{2}+\cdots+k_{n}$ vertices Define $\phi\left(u_{0}\right)=0$
$\phi\left(u_{i}\right)=N\left(n+k_{1}+k_{2}+\cdots+k_{n}\right)-(N-1)-N(i-1)$ for $i=1,2,3, \ldots, n$
$\phi\left(u_{1}^{(j)}\right)=N\left(n+k_{1}+k_{2}+\cdots+k_{n}\right)-N-N(j-1)$
for $j=1,2,3, \ldots, k_{1}$
$\phi\left(u_{i+1}^{(j)}\right)=\phi\left(u_{i}^{(k i)}\right)-2 N-N(j-1) \quad$ for $i=1$,
$j=1,2,3, \ldots, k_{2}$ and $i=2, j=1,2,3, \ldots, k_{3}, \ldots$,
$\mathrm{i}=\mathrm{n}-\mathrm{l}, \mathrm{j}=1,2,3, \ldots, \mathrm{k}_{n}$
Clearly ϕ is 1-1 and ϕ defines a one
modulo N graceful labelling of Rooted trees of height two.

Example 2.33. One modulo 6 graceful labelling of Rooted trees of height two.

Example 2.34. One modulo 9 graceful labelling of Rooted trees of height two.

References

1. S.W. Golomb, How to number a graph in Graph theory and computing R.C. Read, ed., Academic press, New York 23-27 (1972).
2. R.B. Gnanajothi, Topics in Graph theory, Ph.D. Thesis, Madurai Kamaraj University, (1991).
3. Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18 (2011), \#DS6.
4. K.M. Kathiresan and S. Amutha, Arbitrary supersubdivisions of stars are graceful, Indian J. Pure Appl. Math., 35(1), 8184 (2004).
5. A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs. (International Symposium, Rome July 1966) Gordom and Breach, N. Y. and Dunod paris 349-355 (1967).
6. C. Sekar, Studies in Graph theory, Ph.D. Thesis, Madurai Kamaraj University (2002).
