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Abstract

We prove common fixed point theorem for weakly compatible
mappings in fuzzy metric space. We extend results of Pathak, Khan and
Tiwari to fuzzy metric space.
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Introduction

In 1965 the concept of fuzzy sets was
introduced by Zadeh14. It was developed
extensively by many authors and used in
various fields. Especially, Deng3, Erceg4, and
Kramosil and Michalek10 have introduced the
concepts of fuzzy metric spaces in different
ways.

Recently, George and Veeramani7,8

modified the concept of fuzzy metric spaces
introduced  by  kramosil  and  Michalek10  and
defined   the  Hausdoff topology of fuzzy metric
spaces. They showed also that every metric
induces a fuzzy metric.

Grabiec6 extended the well known
fixed point theorem of Banach1 and Edelstein5

to fuzzy metric spaces in the sense of Kramosil
and Michalek10.

Here we extend results of Pathak,

Khan and Tiwari12 to fuzzy metric space.

Preliminaries :

Definition13 1 :  A binary operation *:
[0,1]  [0,1] [0,1] is called a continuous t-
norm if ([0,1], *) is an Abelian topological
monoid with the unit 1 such that a * b  c * d
whenever a  c and b  d for all a, b, c, d are in
[0,1].
Examples of t-norm are a * b = ab and a * b =
min {a,b}.

Definition 2 :10 The 3-tuple (X,M, *)
is called a fuzzy metric space (shortly FM-
space) if X is an arbitrary set, * is a continuous
t-norm and M is a fuzzy set in X2 [0, )
satisfying the following conditions for all x, y,
z in  X and t, s > 0,
(FM-1) M(x, y, 0) = 0,
(FM-2) M(x, y, t) = 1 for all t  > 0 if and only

if x = y,
(FM-3) M(x, y, t) = M(y, x, t),
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(FM-4) M(x, y, t) * M(y, z, s)    M(x, z, t+s),
(FM-5) M(x, y, .):[0,1] [0,1] is left continuous.

In what follows, (X, M, *) will denote a fuzzy
metric space. Note that
M(x, y, t) can be thought as the degree of
nearness between x and y with
respect to t. We identify  x = y with M(x, y, t)
= 1 for all t > 0 and M(x, y, t) = 0 with  and
we can find some topological properties and
examples of fuzzy metric spaces in (George
and Veeramani7).

Example 1 :7 Let (X, d) be a metric
space. Define a * b = ab or a * b = min {a, b}
and for all x, y in  X and t > 0,

                    t
M(x,y,t) =

                           t + d(x,y)

Then (X, M, *) is a fuzzy metric space. We
call this fuzzy metric M induced by the metric
d the standard fuzzy metric.

For workers of this line we are giving Lemmas.

Lemma 1:6  For all x,y  X,  M(x,y,.)
is non-decreasing.

Definition 3:6 Let (X, M, *) be a fuzzy
metric space :

(1) A sequence {xn} in X is said to be
convergent to a point x  X (denoted by limn

xn = x), if
limn   M(xn, x, t) = 1,

for all t > 0.
(2) A sequence {xn} in X called a Cauchy
sequence if
limn   M(Xn+p, xn, t) = 1,

for all t  > 0 and p > 0.
(3) A fuzzy metric space in which every
Cauchy sequence is convergent is said to be
complete.

Remark 1 : Since * is continuous, it
follows from (FM-4) that the limit of the
sequence in FM-space  is uniquely determined.
Let (X,M,*)  be a fuzzy metric space with the
following condition:

(FM-6)  limt    M(x,y,t) = 1  for all x,y  X.

Lemma  2 :11 If  for all x,y  X, t > 0
and for a number k  (0,1),

M(x,y,kt)    M(x,y,t)
then x = y.

       Lemma2,11 3:  Let {yn} be a sequence in
a fuzzy metric space (X, M, *) with the
condition (FM-6). If there exists a number k
(0,1) such that

M(yn+2, yn+1, kt)  M(yn+1, yn, t)
for all t > 0 and n = 1, 2, …….. then {yn} is a
Cauchy sequence in X.

Definition  4 :9 A pair of mappings S
and T is called weakly compatible pair in fuzzy
metric space if they commute at coincidence
points; i.e. , if  Tu = Su for some u  X, then
TSu  =  STu.

It is easy to see that if S and T are
compatible , then they are weakly compatible
and the converse is not true in general.

 Example 2 : Let X = R+ . Define S and T by:
   Sx = x  and Tx = 2x-1; Sx = Tx  iff   x  =  1,
As   ST(1) = S(1) = 1,  TS(1) = T(1) = 1
Therefore  {S,T} are weakly compatible.
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Let  be the set of all continuous and
increasing functions i :[0,1]  [0,1] in any
coordinate and i(t) > t for all t  [0,1) and i =
1, 2, 3, 4, 5.

Main Results

We extend results of Pathak, Khan
and Tiwari12 to fuzzy metric spaces.

Theorem 1: Let (X, M, *) be a
complete fuzzy metric space with t*t  t for
all t  [0,1]. Let A, B, S and T be mappings of
X into itself such that
(1.1) A(X)  T(X) and  B(X)  S(X),
(1.2) there exists a constant k  (0,1) such
that
M2p(Ax, By, kt)  min{ 1(M2p(Sx, Ty, t)),

2(Mq(Sx, Ax, t).Mq’(Ty, By, t)) ,
3 (Mr(Sx, By, (2- ) t).Mr’(Ty, Ax, t)),
4(Ms(Sx, Ax, t).Ms’(Ty, Ax, t)),
5(Ml(Sx, By, (2- ) t). Ml’(Ty, By, t))},

for all x, y  X,     0,   (0,2), t > 0,  i   ,
i = 1, 2, 3, 4, 5,  0 < p, q, q’, r, r’ , s, s’  l, l’    1,
such that 2p = q + q’ = r + r’  = s + s’ = l + l’ .

(1.3)  If the pairs {A, S} and {B, T} are weakly
compatible, then
A, B, S and T have a unique common fixed
point in X.

Proof : Since A(X)  T(X), for
arbitrary point x0 in X, there exists a point
x1  X  such that T x1 = Ax0. Since B(X) 
S(X), for this point x1 we can choose a point
x2  X such that Sx2 = Bx1 and so on.
Continuing in this manner, we can define a

sequence {yn} in X such that
(1.4)  y2n = T x2n+1 = Ax2n and y2n+1 = Sx2n+2 =
Bx2n+1  for n = 1, 2, 3, . . .,
We need following Lemma for the proof of
our mail Theorem.

Lemma 4 :  Let A,B, S and T be self-
mappings of a fuzzy metric space
(X, M, *) satisfying the conditions (1.1) and
(1.2). Then the sequence {yn} denoted by (1.4)
is a Cauchy sequence in X.

Proof. For t > 0, By putting x  =  x2n

and y  =  x2n+1  in  (1.2),  = 1–q, with q  (0,1)
we have

M2p(y2n, y2n+1, kt) = M2p(Ax2n,Bx2n+1, kt)
M2p(Ax2n,Bx2n+1, kt) min{ 1(M2p(Sx2n, Tx2n+1, t)),
      2(Mq(Sx2n,Ax2n,t).Mq’(Tx2n+1, Bx2n+1, t)),
     3(Mr(Sx2n, Bx2n+1,(2- ) t).Mr’(Tx2n+1,

Ax2n, t))
    4(Ms(Sx2n, Ax2n,t).Ms’(Tx2n+1, Ax2n, t)),
   5(Ml(Sx2n, Bx2n+1, (2- )t). Ml’(Tx2n+1,

Bx2n+1, t))},
M2p(y2n, y2n+1, kt)  min{ 1(M

2p(y2n-1, y2n, t)),
2(Mq(y2n-1, y2n,t).Mq’(y2n, y2n+1,t)),

3(Mr(y2n-1, y2n+1, (1+q)t).Mr’(y2n, y2n, t)),
   4(Ms(y2n-1, y2n, t).Ms’(y2n, y2n, t)),
      5(Ml(y2n-1, y2n+1, (1+q)t). Ml’(y2n, y2n+1,

t)) },
M2p(y2n, y2n+1, kt)  min { 1(M2p(y2n-1, y2n, t)),

2(Mq(y2n-1, y2n, t).Mq’(y2n, y2n+1, t)),
3(Mr(y2n-1, y2n, t)* Mr(y2n, y2n+1, qt))1
4(Ms(y2n-1, y2n, t)1),

5 (Ml(y2n-1, y2n, t) * Ml(y2n, y2n+1, qt).
Ml’(y2n, y2n+1, t))},

Since the t-norm * is continuous and M(x, y, .)



is continuous , letting q  1, we have
 M2p(y2n, y2n+1, kt)  min { 1(M2p(y2n-1, y2n, t)),

2(Mq(y2n-1, y2n, t).Mq’(y2n, y2n+1, t)), 3(Mr(y2n-1,
y2n, t)* Mr(y2n, y2n+1, t))

4 (Ms(y2n-1, y2n, t)), 5 (Ml(y2n-1, y2n, t) *
Ml(y2n, y2n+1, t). Ml’(y2n, y2n+1, t))},
M(y2n, y2n+1 , kt)

M(y2n-1, y2n, t), if M(y2n-1, y2n, t) <
M(y2n, y2n+1, t)

(1.5)>
M(y2n, y2n+1, t), if M(y2n-1, y2n, t)  
M(y2n, y2n+1, t),

as i(t) > t for 0 < t < 1. Thus {M(y2n, y2n+1, t),
n  0} is an increasing sequence of positive
real numbers in [0,1] and therefore tends to a
limit l  1. We assert that l = 1 . If not, l < 1
which on letting n  in (1.5) one gets l  (l)
> l a contradiction yielding thereby l = 1.
Therefore for every n  N, using analogous
arguments one can show that {M(y2n+1, y2n+2,
t), n  0} is a sequence of positive real numbers
in [0, 1] which tends to a limit l = 1. Therefore
for every n  N, M(yn, yn+1, t) > M(yn-1, yn, t)
and
limn   M(yn, yn+1, t) = 1.
Now for any positive integer p
M(yn, yn+p, t) M(yn, yn+1, t/p)*p-times. . . *M(yn+p-1,
yn+p, t/p).
Since limn  M(yn, yn+1, t) = 1 for t > 0, it
follows that
limn  M(yn, yn+p, t)  1* 1  . . . * 1 = 1
which shows that {yn} is a Cauchy sequence
in X.
Now we prove our main result as follows:
Since X is complete, it follows by Lemma 4,
that the sequence {yn} converges to a point z

RST

in X. On the other hand, the sub sequences
{Ax2n}, {Bx2n+1}, {Sx2n} and {T x2n+1} of {yn}
also converges to the point z.
Now suppose that  the subsequence {y2n} is
contained in S(X) and has a limit in S(X) call it z.
Let  u  S-1(z) . Then  Su  =  z.
By (1.2) with   =  1, we have

    M2p(Au, y2n+1, kt) = M2p(Au, Bx2n+1, kt)
 min { 1(M2p(Su, Tx2n+1, t)), 2(Mq(Su, Au,

t). Mq’(Tx2n+1, Bx2n+1, t)) ,
3(M r(Su, Bx2n+1,t).M r ’(Tx2n+1,  Au, t)),
4(Ms(Su, Au, t). Ms’(Tx2n+1, Au, t)),
5(Ml(Su, Bx2n+1, t). Ml’(Tx2n+1, Bx2n+1, t)) },

which implies that as n   , we have

M2p(Au, z, kt)  min { 2(Mq(z, Au, t)) ,
3(Mr’(z, Au, t)),
4(Ms+s’(z, Au, t)}

M2p(Au, z, kt) 4(M2p(z, Au, t))>M2p(z, Au, t)

a contradiction. Therefore  Au =  z  =  Su , i. e.
u is a coincidence point of A and S.
Now suppose that the subsequence {y2n} is
contained in T(X) and has a limit in T(X) call
it z . Let  v  T-1(z) . Then  Tv = z .
Again by (1.2) with  = 1, we have

M2p(y2n, Bv, kt) = M2p(Ax2n, Bv, kt)
    min { 1(M2p(Sx2n, Tv, t)), 2(Mq(Sx2n, Ax2n,

t). Mq’(Tv, Bv, t)) ,
  3(Mr(Sx2n,  Bv, t).M r ’(Tv,  Ax2n,  t )),

4(Ms(Sx2n, Ax2n, t).Ms’(Tv, Ax2n, t)),
    5(Ml(Sx2n, Bv, t). Ml’(Tv, Bv, t)) },

which implies that as n  , we have
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M2p(z, Bv, kt)   min { 1(M2p(z , z, t)), 2(Mq(z,
z , t).Mq’(z, Bv, t)) ,

3(Mr(z , Bv, t).Mr’(z, z , t)), 4(Ms(z,
   z , t).Ms’(z, z , t)),

5(Ml(z , Bv, t). Ml’(z , Bv, t)) },
or
M2p(z, Bv, kt)  min { 1(1), 2(Mq’(z, Bv, t)),

3(Mr(z , Bv, t)),
4(1), 5(Ml+ l’(z , Bv, t)) },

or
M2p(z, Bv, kt) 5(Ml+ l’(z, Bv, t))>M2p(z, Bv, t)

a contradiction Therefore  Bv  =  z. Since Tv
=  z thus Tv  =  Bv  =  z
i.e. v is a coincidence point of B and T.
Since the pair {A,S} is weakly compatible
therefore, A and S commute at their coincidence
point, i.e. if ASw  =  SAw  or  Az  =  Sz.

Similarly, since the pair {B,T} is weakly
compatible therefore, B and T commute at
their coincidence point, i.e. if BTw  =  TBw
or  Bz  =  Tz .
Now, we prove  Az  =  z. By (1.2) with   = 1,
we have
      M2p(Az, y2n+1, kt) = M2p(Az, Bx2n+1, kt)

 min{ 1(M2p(Sz, Tx2n+1, t)), 2(Mq(Sz, Az, t).
Mq’(Tx2n+1, Bx2n+1, t)),
  3(Mr(Sz, Bx2n+1, t).Mr’(Tx2n+1, Az, t)),

4(Ms(Sz, Az, t).Ms’(Tx2n+1, Az, t)),
  5(Ml(Sz, Bx2n+1, t). Ml’(Tx2n+1, Bx2n+1, t))},
which implies that as n   , we have
M2p(Az, z, kt)  min { 1(M2p(Az, z, t)), 2(1) ,

3(Mr(Az, z, t).Mr’(z, Az, t)),
4(Ms’(z, Az, t)), 5(Ml(Az, z, t)) },

M2p(Az, z, kt)  1(M2p(Az, z, t)>M2p(Az, z, t)

a contradiction. Therefore  Az  =  z . Thus  Az

=  Sz  =  z .
Now, we prove  Bz = z. By (1.2) with   = 1,
we have
M2p(Ax2n, Bz, kt)  min{ 1(M2p(Sx2n, Tz, t)),

2(Mq(Sx2n, Ax2n, t).Mq’(Tz, Bz, t)),
   3(Mr(Sx2n, Bz, t).Mr’(Tz, Ax2n, t)), 4(Ms(Sx2n,

Ax2n, t).Ms’(Tz, Ax2n, t)),
  5(Ml(Sx2n, Bz, t). Ml’(Tz, Bz, t)) },
which implies that as n  , we have
M2p(Ax2n, Bz, kt)  min { 1(M2p(z, Bz, t)), 2(1),

3(Mr+ r’(z, Bz, t)),
4(Ms’(Bz, z, t)), 5(Ml(z, Bz, t)) },

or
    M2p(z, Bz, kt) 1(M2p(z, Bz, t)>M2p(z, Bz,t).

a contradiction.  Therefore Bz = z. Since Tz
=  z thus Tz  =  Bz = z.
Combining the above results, we have

Az  = Bz  = Sz = Tz = z, z is a common
fixed point of A, B, S and T.
For the uniqueness of common fixed point let
w (z  w) be another common fixed point of
A, B, S and T . Then by (1.2) with    =  1, we
have
   M2p(z, w, kt) =  M2p(Az, Bw, kt)

 min { 1(M2p(Sz, Tw, t)), 2(Mq(Sz, Az, t).
Mq’(Tw, Bw, t)) ,
   3(Mr(Sz, Bw, t).Mr’(Tw, Az, t)), 4(Ms(Sz,
      Az, t).Ms’(Tw, Az, t)),
 5(Ml(Sz, Bw, t). Ml’(Tw, Bw, t))},
or
M2p(z, w, kt)   min { 1(M2p(z, w, t)), 2(Mq(z,
z, t). Mq’(w, w, t)) ,
    3(Mr(z, w, t).Mr’(w, z, t)),4(Ms(z, z, t).

Ms’(w, z, t)),
  5(Ml(z, w, t). Ml’(w, w, t)) },
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M2p(z, w, kt)  1(M2p(z, w, t)) > M2p(z, w, t) .

a contradiction. Therefore z  =  w.
This completes the proof of the Theorem.
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