Common Fixed Point Theorem for Weakly Compatible Mappings in Fuzzy Metric Spaces

GEETA MODI*, MONA VERMA** and M.S. RATHORE¹

(Acceptance Date 26th November, 2013)

Abstract

We prove common fixed point theorem for weakly compatible mappings in fuzzy metric space. We extend results of Pathak, Khan and Tiwari to fuzzy metric space.

Introduction

In 1965 the concept of fuzzy sets was introduced by Zadeh¹⁴. It was developed extensively by many authors and used in various fields. Especially, Deng³, Erceg⁴, and Kramosil and Michalek¹⁰ have introduced the concepts of fuzzy metric spaces in different ways.

Recently, George and Veeramani^{7,8} modified the concept of fuzzy metric spaces introduced by kramosil and Michalek¹⁰ and defined the Hausdoff topology of fuzzy metric spaces. They showed also that every metric induces a fuzzy metric.

Grabiec⁶ extended the well known fixed point theorem of Banach¹ and Edelstein⁵ to fuzzy metric spaces in the sense of Kramosil and Michalek¹⁰.

Here we extend results of Pathak,

Khan and Tiwari¹² to fuzzy metric space.

Preliminaries:

Definition¹³ 1: A binary operation *: [0,1] [0,1] [0,1] is called a continuous t-norm if ([0,1], *) is an Abelian topological monoid with the unit 1 such that a * b c * d whenever a c and b d for all a, b, c, d are in [0,1].

Examples of t-norm are a * b = ab and $a * b = min \{a,b\}$.

Definition 2: 10 The 3-tuple (X,M, *) is called a fuzzy metric space (shortly FM-space) if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set in X^2 [0,) satisfying the following conditions for all x, y, z in X and t, s > 0,

(FM-1) M(x, y, 0) = 0,

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t),

436 Geeta Modi, et al.

(FM-4) M(x, y, t) * M(y, z, s) M(x, z, t+s), (FM-5) M(x, y, .):[0,1] [0,1] is left continuous.

In what follows, (X, M, *) will denote a fuzzy metric space. Note that

M(x, y, t) can be thought as the degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0 and M(x, y, t) = 0 with x = 0

= 1 for all t > 0 and M(x, y, t) = 0 with and we can find some topological properties and examples of fuzzy metric spaces in (George and Veeramani⁷).

Example 1:⁷ Let (X, d) be a metric space. Define a * b = ab or $a * b = min \{a, b\}$ and for all x, y in X and t > 0,

$$M(x,y,t) = \frac{t}{t + d(x,y)}$$

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric M induced by the metric d the standard fuzzy metric.

For workers of this line we are giving Lemmas.

 $\label{eq:lemma 1:6} \textit{For all } x,y \quad X, \ M(x,y,.)$ is non-decreasing.

Definition 3:⁶ Let (X, M, *) be a fuzzy metric space :

(1) A sequence $\{x_n\}$ in X is said to be convergent to a point x X (denoted by $\lim_n x_n = x$), if

 $\lim_{n} M(x_{n}, x, t) = 1,$

for all t > 0.

(2) A sequence $\{x_n\}$ in X called a Cauchy sequence if

 $\lim_{n} M(X_{n+p}, x_n, t) = 1,$

for all t > 0 and p > 0.

(3) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Remark 1: Since * is continuous, it follows from (FM-4) that the limit of the sequence in FM-space is uniquely determined. Let (X,M,*) be a fuzzy metric space with the following condition:

(FM-6) \lim_{t} M(x,y,t) = 1 for all x,y X.

 $\label{eq:lemma-2} \begin{tabular}{ll} \it Lemma 2: \begin{tabular}{ll} \it Lemma 2: \begin{tabular}{ll} \it If for all x,y & $X,t>0$ \\ and for a number k & (0,1), \\ \end{tabular}$

M(x,y,kt) M(x,y,t)

then x = y.

Lemma^{2,11} 3: Let $\{y_n\}$ be a sequence in a fuzzy metric space (X, M, *) with the condition (FM-6). If there exists a number k (0,1) such that

$$\begin{split} M(y_{n+2},y_{n+1},kt) &\quad M(y_{n+1},y_n,t)\\ \text{for all } t>0 \text{ and } n=1,\,2,\,\ldots\ldots\text{ then } \{y_n\} \text{ is a}\\ \text{Cauchy sequence in } X. \end{split}$$

Definition $4:^9$ A pair of mappings S and T is called weakly compatible pair in fuzzy metric space if they commute at coincidence points; *i.e.*, if Tu = Su for some u = X, then TSu = STu.

It is easy to see that if S and T are compatible, then they are weakly compatible and the converse is not true in general.

Example 2: Let $X = R_+$. Define S and T by: Sx = x and Tx = 2x-1; Sx = Tx iff x = 1, As ST(1) = S(1) = 1, TS(1) = T(1) = 1 Therefore $\{S,T\}$ are weakly compatible.

Let be the set of all continuous and increasing functions $_i:[0,1]$ [0,1] in any coordinate and $_i(t)>t$ for all t [0,1) and i=1,2,3,4,5.

Main Results

We extend results of Pathak, Khan and Tiwari¹² to fuzzy metric spaces.

Theorem 1: Let (X, M, *) be a complete fuzzy metric space with t*t t for all t [0,1]. Let A, B, S and T be mappings of X into itself such that (1.1) A(X) T(X) and B(X) S(X), (1.2) there exists a constant k (0,1) such that

$$\begin{split} M^{2p}(Ax,\ By,\ kt) & & \min\{\ _1(M^{2p}(Sx,\ Ty,\ t)),\\ & _2(Mq(Sx,Ax,t).M^{q'}(Ty,By,t))\ ,\\ & _3(M^r(Sx,By,(2-\)\,t).M^{r'}(Ty,Ax,t)),\\ & _4(M^s(Sx,Ax,t).M^{s'}(Ty,Ax,t)),\\ & _5(M^l(Sx,By,(2-\)\,t).\ M^r(Ty,By,t))\}, \end{split}$$

for all x, y = X, 0, (0,2), t>0, = 1, = 1, 2, 3, 4, 5, 0 < p, q, q, r, r', s, s', l, l' = 1, such that <math>2p = q + q' = r + r' = s + s' = l + l'.

(1.3) If the pairs $\{A, S\}$ and $\{B, T\}$ are weakly compatible, then

A, B, S and T have a unique common fixed point in X.

Proof: Since A(X) = T(X), for arbitrary point x_0 in X, there exists a point $x_1 = X$ such that $T(x_1) = Ax_0$. Since B(X) = S(X), for this point x_1 we can choose a point $x_2 = X$ such that S(X) = X and so on. Continuing in this manner, we can define a

sequence $\{y_n\}$ in X such that (1.4) $y_{2n} = T$ $x_{2n+1} = Ax_{2n}$ and $y_{2n+1} = Sx_{2n+2} = Bx_{2n+1}$ for $n = 1, 2, 3, \ldots$, We need following Lemma for the proof of our mail Theorem.

Lemma 4: Let A,B, S and T be self-mappings of a fuzzy metric space (X, M, *) satisfying the conditions (1.1) and (1.2). Then the sequence $\{y_n\}$ denoted by (1.4) is a Cauchy sequence in X.

$$\begin{split} \textit{Proof.} \text{ For } t > 0, \text{ By putting } x &= x_{2n} \\ \text{and } y &= x_{2n+1} \text{ in } (1.2), &= 1-q, \text{ with } q \quad (0,1) \\ \text{we have} \\ M^{2p}(y_{2n}, y_{2n+1}, \text{kt}) &= M^{2p}(Ax_{2n}, Bx_{2n+1}, \text{kt}) \\ M^{2p}(Ax_{2n}, Bx_{2n+1}, \text{kt}) & \min \{ \ _{1}(M^{2p}(Sx_{2n}, Tx_{2n+1}, t)), \\ \ _{2}(M^{q}(Sx_{2n}, Ax_{2n}, t).M^{q'}(Tx_{2n+1}, Bx_{2n+1}, t)), \\ \ _{3}(M^{r}(Sx_{2n}, Bx_{2n+1}, (2-) t).M^{r'}(Tx_{2n+1}, t)), \end{split}$$

 $\begin{aligned} &Ax_{2n},\,t))\\ &_4(M^s(Sx_{2n},Ax_{2n},\!t).M^{s'}(Tx_{2n+1},Ax_{2n},\,t)),\\ &_5(M^l(Sx_{2n},\,Bx_{2n+1},\,(2\text{--})t).\,\,M^{l'}(Tx_{2n+1},\,\\ &Bx_{2n+1},\,t))\}, \end{aligned}$

$$\begin{split} M^{2p}(y_{2n},y_{2n+1},t), & \min \{ & _{1}(M^{2p}(y_{2n-1},y_{2n},t)), \\ & _{2}(M^{q}(y_{2n-1},y_{2n},t).M^{q'}(y_{2n},y_{2n+1},t)), \\ & _{3}(M^{r}(y_{2n-1},y_{2n+1},(1+q)t).M^{r'}(y_{2n},y_{2n},t)), \\ & _{4}(M^{s}(y_{2n-1},y_{2n},t).M^{s'}(y_{2n},y_{2n},t)), \\ & _{5}(M^{l}(y_{2n-1},y_{2n+1},(1+q)t).M^{l'}(y_{2n},y_{2n+1},t)) \; \}, \end{split}$$

$$\begin{split} M^{2p}(y_{2n},y_{2n+1},kt) & & \min \ \{ \ _{1}(M^{2p}(y_{2n-1},y_{2n},t)), \\ & \ _{2}(M^{q}(y_{2n-1},y_{2n},t).M^{q'}(y_{2n},y_{2n+1},t)), \\ & \ _{3}(M^{r}(y_{2n-1},y_{2n},t)*M^{r}(y_{2n},y_{2n+1},qt))1 \\ & \ _{4}(M^{s}(y_{2n-1},y_{2n},t)1), \\ & \ _{5}(M^{l}(y_{2n-1},y_{2n},t)*M^{l}(y_{2n},y_{2n+1},qt). \\ & \ M^{l'}(y_{2n},y_{2n+1},t))\}, \end{split}$$

Since the t-norm * is continuous and M(x, y, .)

438 Geeta Modi, et al.

$$(1.5) > \begin{matrix} M(y_{2n-1},\ y_{2n},\ t),\ if\ M(y_{2n-1},\ y_{2n},\ t) < \\ M(y_{2n},\ y_{2n+1},\ t) \\ M(y_{2n},\ y_{2n+1},\ t),\ if\ M(y_{2n-1},\ y_{2n},\ t) \\ M(y_{2n},\ y_{2n+1},\ t), \end{matrix}$$

as $_{i}(t) > t$ for 0 < t < 1. Thus $\{M(y_{2n}, y_{2n+1}, t), n = 0\}$ is an increasing sequence of positive real numbers in [0,1] and therefore tends to a limit l=1. We assert that l=1. If not, l<1 which on letting n = in (1.5) one gets l=(l)>l a contradiction yielding thereby l=1. Therefore for every n = N, using analogous arguments one can show that $\{M(y_{2n+1}, y_{2n+2}, t), n=0\}$ is a sequence of positive real numbers in [0,1] which tends to a limit l=1. Therefore for every n = N, $M(y_n, y_{n+1}, t) > M(y_{n-1}, y_n, t)$ and

 \lim_{n} $M(y_{n}, y_{n+1}, t) = 1.$

Now for any positive integer p

$$\begin{split} M(y_n,y_{n+p},t) & \ M(y_n,y_{n+1},t/p)^{*p\text{-times}}... ^*M(y_{n+p\text{-}1},\\ & y_{n+p},t/p). \end{split}$$

Since \lim_{n} $M(y_n, y_{n+1}, t) = 1$ for t > 0, it follows that

 $\lim_n \quad M(y_n,\,y_{n+p},\,t) \quad 1*\;1\;\ldots *\;1=1$ which shows that $\{y_n\}$ is a Cauchy sequence in X.

Now we prove our main result as follows: Since X is complete, it follows by Lemma 4, that the sequence $\{y_n\}$ converges to a point z in X. On the other hand, the sub sequences $\{Ax_{2n}\}$, $\{Bx_{2n+1}\}$, $\{Sx_{2n}\}$ and $\{Tx_{2n+1}\}$ of $\{y_n\}$ also converges to the point z.

Now suppose that the subsequence $\{y_{2n}\}$ is contained in S(X) and has a limit in S(X) call it z. Let $u S^{-1}(z)$. Then Su = z. By (1.2) with = 1, we have

$$\begin{split} M^{2p}(Au,\,y_{2n+1},\,kt) &= M^{2p}(Au,\,Bx_{2n+1},\,kt) \\ \min \, \{ \ _{1}(M^{2p}(Su,\,Tx_{2n+1},\,t)), \ _{2}(M^{q}(Su,\,Au,\,t),\,M^{q'}(Tx_{2n+1},\,Bx_{2n+1},\,t)) \,, \\ _{3}(M^{r}(Su,\,Bx_{2n+1},t).M^{r'}(Tx_{2n+1},\,Au,\,t)), \\ _{4}(M^{s}(Su,\,Au,\,t).\,M^{s'}(Tx_{2n+1},\,Au,\,t)), \\ _{5}(M^{l}(Su,\,Bx_{2n+1},\,t).\,M^{l'}(Tx_{2n+1},\,Bx_{2n+1},\,t)) \, \}, \end{split}$$

which implies that as n , we have

a contradiction. Therefore Au=z=Su, i. e. u is a coincidence point of A and S. Now suppose that the subsequence $\{y_{2n}\}$ is

Now suppose that the subsequence $\{y_{2n}\}$ is contained in T(X) and has a limit in T(X) call it z. Let $v = T^{-1}(z)$. Then Tv = z. Again by (1.2) with = 1, we have

$$\begin{split} M^{2p}(y_{2n}, Bv, kt) &= M^{2p}(Ax_{2n}, Bv, kt) \\ \min \left\{ \begin{array}{l} _{1}(M^{2p}(Sx_{2n}, Tv, t)), \ _{2}(M^{q}(Sx_{2n}, Ax_{2n}, \\ t). \ M^{q'}(Tv, Bv, t)) \right., \\ _{3}(M^{r}(Sx_{2n}, Bv, t).M^{r'}(Tv, Ax_{2n}, t)), \\ _{4}(M^{s}(Sx_{2n}, Ax_{2n}, t).M^{s'}(Tv, Ax_{2n}, t)), \\ _{5}(M^{l}(Sx_{2n}, Bv, t).M^{l'}(Tv, Bv, t)) \right.\}, \end{split}$$

which implies that as n , we have

```
M^{2p}(z, Bv, kt) = min \{ 1(M^{2p}(z, z, t)), 2(M^{q}(z, z, t)) \}
z, t).M^{q'}(z, Bv, t)),
          _{3}(M^{r}(z, Bv, t).M^{r'}(z, z, t)), _{4}(M^{s}(z, t))
           z, t).M^{s'}(z, z, t)),
          _{5}(M^{l}(z, Bv, t), M^{l'}(z, Bv, t)) \},
or
M^{2p}(z, Bv, kt) = \min \{ 1, 1, 2, M^{q'}(z, Bv, t) \}
 _3(M^r(z, Bv, t)),
          _{4}(1), _{5}(M^{l+1'}(z, Bv, t)) \},
M^{2p}(z, Bv, kt) = {}_{5}(M^{l+1}(z, Bv, t)) > M^{2p}(z, Bv, t)
a contradiction Therefore Bv = z. Since Tv
= z \text{ thus } Tv = Bv = z
i.e. v is a coincidence point of B and T.
Since the pair \{A,S\} is weakly compatible
therefore, A and S commute at their coincidence
point, i.e. if ASw = SAw or Az = Sz.
Similarly, since the pair {B,T} is weakly
compatible therefore, B and T commute at
```

their coincidence point, i.e. if BTw = TBw or Bz = Tz.

Now, we prove Az = z. By (1.2) with we have

$$\begin{split} M^{2p}(Az,\,y_{2n+1},\,kt) &= M^{2p}(Az,\,Bx_{2n+1},\,kt)\\ \min\{_{-1}(M^{2p}(Sz,\,Tx_{2n+1},\,t)),_{-2}(M^q(Sz,\,Az,\,t).\\ M^{q'}(Tx_{2n+1},\,Bx_{2n+1},\,t)), \end{split}$$

$$_{3}(M^{r}(Sz, Bx_{2n+1}, t).M^{r'}(Tx_{2n+1}, Az, t)),$$
 $_{4}(M^{s}(Sz, Az, t).M^{s'}(Tx_{2n+1}, Az, t)),$

 $_{5}(M^{l}(Sz,Bx_{2n+1},t).\ M^{l'}(Tx_{2n+1},Bx_{2n+1},t))\},$ which implies that as n , we have $M^{2p}(Az, z, kt) \min \{ 1(M^{2p}(Az, z, t)), 2(1),$

 $_{3}(M^{r}(Az, z, t).M^{r'}(z, Az, t)),$ $_{4}(M^{s'}(z, Az, t)), _{5}(M^{l}(Az, z, t)) \},$

 $M^{2p}(Az, z, kt)$ $_{1}(M^{2p}(Az, z, t)) > M^{2p}(Az, z, t)$

a contradiction. Therefore Az = z. Thus Az

```
= Sz = z.
Now, we prove Bz = z. By (1.2) with
we have
M^{2p}(Ax_{2n}, Bz, kt) \min\{ 1(M^{2p}(Sx_{2n}, Tz, t)), \}
 _{2}(M^{q}(Sx_{2n}, Ax_{2n}, t).M^{q'}(Tz, Bz, t)),
   _{3}(M^{r}(Sx_{2n}, Bz, t).M^{r'}(Tz, Ax_{2n}, t)), _{4}(M^{s}(Sx_{2n}, t))
           Ax_{2n}, t).M^{s'}(Tz, Ax_{2n}, t)),
   _{5}(M^{l}(Sx_{2n}, Bz, t), M^{l'}(Tz, Bz, t)) \},
which implies that as n , we have
M^{2p}(Ax_{2n}, Bz, kt) \min \{ (M^{2p}(z, Bz, t)), (1), \}
 _{3}(M^{r+r'}(z, Bz, t)),
            _{4}(M^{s'}(Bz, z, t)), _{5}(M^{l}(z, Bz, t)) \},
```

or

$$M^{2p}(z,Bz,kt) \quad \ _{1}(M^{2p}(z,Bz,t) \!\!>\!\! M^{2p}(z,Bz,t).$$

a contradiction. Therefore Bz = z. Since Tz= z thus Tz = Bz = z.

Combining the above results, we have

Az = Bz = Sz = Tz = z, z is a common fixed point of A, B, S and T.

For the uniqueness of common fixed point let w) be another common fixed point of A, B, S and T. Then by (1.2) with have

$$M^{2p}(z, w, kt) = M^{2p}(Az, Bw, kt)$$

 $min \{ {}_{1}(M^{2p}(Sz, Tw, t)), {}_{2}(M^{q}(Sz, Az, t).$
 $M^{q'}(Tw, Bw, t)),$
 ${}_{3}(M^{r}(Sz, Bw, t).M^{r'}(Tw, Az, t)), {}_{4}(M^{s}(Sz, Az, t).M^{s'}(Tw, Az, t)),$
 ${}_{5}(M^{l}(Sz, Bw, t).M^{l'}(Tw, Bw, t))\},$
or
 $M^{2p}(z, w, kt) = min \{ {}_{1}(M^{2p}(z, w, t)), {}_{2}(M^{q}(z, w, t)), {}_{3}(M^{q}(z, w, t)), {}_{4}(M^{q}(z, w, t))$

 $M^{2p}(z, w, kt) = min \{ 1(M^{2p}(z, w, t)), 2(M^{q}(z, w, t)) \}$ z, t). $M^{q'}(w, w, t)$,

$$_{3}(M^{r}(z, w, t).M^{r'}(w, z, t)),_{4}(M^{s}(z, z, t).$$
 $M^{s'}(w, z, t)),$

$$_{5}(M^{l}(z, w, t). M^{l'}(w, w, t)) \},$$

 $M^{2p}(z,\,w,\,kt) \qquad {}_1(M^{2p}(z,\,w,\,t)) > M^{2p}(z,\,w,\,t) \; . \label{eq:mass}$

a contradiction. Therefore z = w. This completes the proof of the Theorem.

References

- 1. Banach, S., Surles operations danseles ensembles abstracts at leur applications aux equations integrals. *Fund. Math.*, *3*, 133-181 (1922).
- 2. Cho, Y.J., Fixed points in fuzzy metric spaces, *J. Fuzzy Math.*, *5*(*4*), 949-962 (1997).
- 3. Deng, Z. K., Fuzzy pseudo metric spaces, *J. Math. Anal. Appl.*, *86*, 74-95 (1982).
- 4. Erceg, M. A., Metric spaces in fuzzy set theory, *J. Math. Anal. Appl.*, *69*, 205-230 (1979).
- Edelstein, M., On fixed point and periodic points under contractive mappings, J. London Math. Soc., 37, 74-79 (1962).
- 6. Grabiec, M., Fixed point in fuzzy metric spaces, *Fuzzy Sets and Systems*, 27, 385-389 (1988).
- 7. George, A. and Veeramani, P., On some

- results in fuzzy metric spaces, *Fuzzy Sets* and *Systems*, 64, 395-399 (1994).
- 8. George, A. and Veeramani, P., On some results of analysis for fuzzy metric spaces, *Fuzzy Sets and Systems*, *90*, 365-368 (1997).
- 9. Jungck G., and Rhoades, B.E., Fixed point for set valued functions without continuity, *Ind. J. Pure Appl. Maths.*, 29(3), 227-238 (1998).
- 10. Kramosil, I. and Michalek, J., Fuzzy metric and statistical metric spaces, *Kybernetika*, *11*, 336-344 (1975).
- 11. Mishra, S.N., Sharma, N. and Singh, S.L., Common fixed points of maps in fuzzy metric spaces. *Internat. J. Math. Math. Sci.*, 17, 253-258 (1994).
- 12. Pathak, H.K., Khan, M.S. and Tiwari, R., A common fixed point theorem and its application to non linear integral equation, *Comp. Math. Appl.* 53, 961-971 (2007).
- 13. Schweizer, B. and Sklar, A., Statistical metric spaces, *Pacific. J. Math.*, *10*, 313-334 (1960).
- 14. Zadeh, L.A., Fuzzy Sets, Inform Contr., 8, 338-353 (1965).