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Abstract

In 1981, Tsukada worked on the isospectral problem with respect
to the complex Laplacian for a two-parameter family of Hermitian structures
on the Calabi-Eckmann manifold S2p+1×S2q+1 including the canonical
one. In this paper, we define a two-parameter family of almost hyperbolic

Hermitian structures on the product manifold M = M × M' of a (2p + 1)-
dimensional Sasakian manifold M and a (2q + 1)-dimensional Sasakian
manifold M' similarly to the method used in11, and show that any almost

hyperbolic Hermitian structure on M  belonging to the two parameter
family is integrable and again find  necessary and sufficient condition
for a hyperbolic Hermitian manifold in the family to be Einstein.

Key words : Einstein, Hermitian structure, Sasakian manifold

Mathematics Subject Classification 53C25, 53B35

Ultra Scientist Vol. 25(2)A, 251-256 (2013).

1. Introduction

Let us consider a differential manifold
M2n of class C endowed with a tensor field
of type (1, 1) F such that for an arbitrary vector
field X.

 X    X    (1.1)

where 
 

F(X)    X
def


then F is called an almost hyperbolic Hermitian

structure, and the differential manifold M2n is
called almost hyperbolic Hermitian manifold.

On almost hyperbolic Hermitian
manifold M2n, if there exists a symmetric metric
tensor g such that,

g ( X , Y ) + g(X, Y) = 0,     (1.2)

Then we say that g is compatible with almost
complex structure and {F, g} is called an almost
hyperbolic Hermitian  structure. The manifold
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M2n with an almost hyperbolic Hermitian
structure is said to be an almost hyperbolic
Hermitian  manifold.

2. Definitions:

Let M = (M, F, g) be a 2n( 4)-
dimensional almost  hyperbolic Hermitian
manifold with almost Hermitian structure ( F,
g). We denote by ∇ , K, ρ and τ the Riemannian
connection, curvature tensor, t Ricci tensor and
scalar curvature of M, respectively3-6.

The curvature tensor K is defined by
K(X,Y) Z = [∇ X,∇ Y] Z - ∇ [ X,  Y ] Z
for arbitrary vector fields X,Y, Z on M.

Ricci *-tensor ρ*  of M is defined by
ρ*(X,Y) = tr (Z  K(X, F Z) F Y)

            = 
 

2
1

tr ( Z  K( X,F Y ) F Z)), (2.1)

for arbitrary vector fields X,Y, Z on M.

Obviously the equality ρ*= ρ holds on M if M
is Kahler.

The *-scalar curvature of M, τ* , which
is the trace of the Ricci *-operator Q* is defined
by g(Q*X,Y) = ρ*(X,Y). A 4-dimensional
almost Hermitian manifold is known as an
almost hyperbolic Hermitian surface. For any
almost hyperbolic Hermitian surface M, the
Ricci and Ricci *-tensor are related by
ρ*(X,Y) + ρ*(Y,X) - {ρ(X,Y) + ρ(FX,F Y)}

=
 

2

*  
g(X,Y),          (2.2)

for arbitrary vector fields X,Y, Z on M.

A 2n-dimensional almost Hermitian
manifold (M, F, g) is called a weakly *-Einstein

manifold if the equality ρ* =
 

n2


g holds on M.

If *-scalar curvature τ* of a weakly *-Einstein
manifold M is constant, then M is said to be
*-Einstein. It is known that there exist weakly
*-Einstein manifolds which are not *-Einstein7, 9.
The Nijenhuis tensor N is defined by

N(X,Y)=[FX,FY]- [X,Y] - F[FX,Y] - F[X,FY]
 (2.3)

for arbitrary vector fields X,Y on M.

The almost hyperbolic complex structure
F is integrable if and only if the Nijenhuis tensor
N vanishes identically on M. An almost
hyperbolic Hermitian manifold (M, F, g) with
integrable almost hyperbolic complex structure
F is called a hyperbolic Hermitian manifold.

The condition N = 0 is equivalent to:
      g((∇ XF) Y, Z) - g((∇ FXF) F Y,Z) = 0   (2.4)
for arbitrary vector fields X,Y, Z on M.

An almost contact metric manifold M
= (M, , ξ, η, g) is called a contact metric
manifold if it satisfies dη(X, Y) = g(X, Y),

for any X, Y X(M). Further, a normal contact
metric manifold is called a Sasakia nmanifold.
It is well-known that a Sasakian manifold is
characterized as an almost contact metric manifold
satisfying the condition
(∇ X)Y = g(X, Y)ξ  η(Y)X,  (2.5)
for arbitrary vector fields2 X,Y on M.

On a (2n+1)-dimensional Sasakian manifold
(M, , ξ, η, g), we have the following identities:
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∇ Xξ = X, (∇ Xη)(Y) = g(X, Y),
K(X, Y)ξ = η(Y)X  η(X)Y,
ρ(ξ,X) = 2nη(X),   (2.6)
for arbitrary vector fields X,Y on M [2].

Curvature identity on a Sasakian manifold2 is
as follows:
K(X, Y, Z,W)  K(Z,X, Y,W)
       = g(X, Y )g(Z,W)  2g(Z, Y ) g(X,W)

+g(Z, X)g(Y,W),         (2.7)
for arbitrary vector fields X, Y , Z, W  M.

3. Almost hyperbolic Hermitian manifold on
the product of two sasakian manifold:

Let us define a two parameter family
of almost hyperbolic Hermitian structures on
the product of two Sasakian manifolds , to find
the integrability conditions and  necessary and
sufficient condition for a hyperbolic Hermitian
structure belonging to the family to be Einstein
one.

Let (M, , ξ, η, g) and resp. (M', ',
ξ', η', g') be a (2p + 1)-dimensional Sasakian
manifold and resp. a (2q +1)-dimensional
Sasakian manifold. Here ∇ , K and ρ and resp.

∇ ', K' and ρ' are the Riemannian connection,
the curvature tensor and the Ricci tensor on

M and resp. of M'. Let  M = M × M' be the
product manifold of M and M’. Then define a

Riemannian metric g=ga,b (a, b  R) on  M  by

 g a,b=g+a(η' η' + η'  η) + (a2 + b2  1)η' 
η' + g'                                                 (3.1)       [11].

Again, define an almost hyperbolic complex
structure  F = Fa,b (a, b  R, b0) on M as
follows.

Fa,b(X + X') = -(X) + {
 

b
a

η(X) +
 

b
ba 22 

η'

(X')}ξ-'(X') - {
 

b
1

η(X) +
 

b
a

η'(X')}ξ',  (3.2)

for any tangent vector X of M and any tangent
vector of X' M'. Here obviously F2 = -I holds
and (F, g ) is an almost hyperbolic Hermitian
structure on M. Since X(M) and X(M') are
regarded as the Lie subalgebra of X(M), we
may rewrite (3.1) and (3.2) as:
 g (X, Y) = g(X, Y),  g  (X, YY') = aη(X)η'(Y'),
 g (X',Y') =g'(X',Y') + (a2 + b2 - 1)η'(X')η'(Y'),

 (3.3)

F(X) =(X) 
 

b
a

η(X)ξ +
 

b
1

η(X)ξ',

F(X') ='(X') 
 

b
ba 22  η'(X')ξ +

 

b
a

η'(X')ξ',

                               (3.4)
for arbitrary vector fields X,Y on M and X’,
Y’  M’.

Let ∇ , K and ρ be the Riemannian
connection, the curvature tensor and the Ricci
tensor of M, and X, Y, Z,W be any smooth
vector field on M and X', Y', Z',W' on M'
respectively. Then, from (3.3) and (3.4), by
making use of (2.5) and (2.6), we have the
following:
 g (  XY, Z) =g(∇ XY, Z),  g  (  X' Y, Z) = -
aη'(X')g(Y, Z),
 g ( XY’,Z)=- aη'(Y')g(X, Z),  g ( XY, Z, Z')
    = aη(∇ XY)η'(Z'),
 g ( X'Y', Z) =aη'(∇ 'X'Y')η(Z),  g ( X'Y, Z, Z')



   = -aη(Y)g'('X',Z'),
 g (∇ XY',Z') = - aη(X)g’(’Y’,Z’),
 g ( X'Y',Z') = g'(∇ 'X'Y',Z') + (a2+b2-1)
(η'(∇ 'X'Y')η'(Z') – η'(X')g'('Y',Z')
                       – η'(Y')g'('X',Z').       (3.5)

By (3.3), (3.4) and (3.5), we have  the following:

 g (( XF)Y,Z) =η(Z)g(X,Y) - η(Y)g(X,Z),
 g (( X'F)Y,Z) = 0,
 g (( XF)Y',Z) = bη'(Y')g(X,Z) – aη'(Y')
    (g(X,Z) - η(X)η(Z)),
 g (( X'F)Y',Z)=-aη(Z)(η'(X')η'(Y')–g'(X',Y')
   + bη(Z)g'('X',Y'),
 g (( X F)Y',Z') = 0,
 g (( X' F)Y',Z') = (a2 + b2)(g'(X',Y')η'(Z') –
  g'(X',Z')η'(Y')).                   (3.6)

Then, from (3.4) and (3.6), we have

g  (( X F)Y , Z ) − g  (( FXF ) F Y , Z ) = 0  (3.7)

holds for any X ,  Y ,  M . So, from (2.4), the
almost hyperbolic complex structure F is

integrable and hence, (M, F,  g ) is a hyperbolic
Hermitian manifold. And  from (3.6), it is

obvious that  M is never Kahler..

Theorem 1: Let (M, , ξ, η, g) and
(M', ', ξ', η', g') be a (2p+ 1)-dimensional Sasakian
manifold and a (2q +1)-dimensional Sasakian

manifold. Let  M = M × M' be the product

manifold of M and M'. Then  ),,( gFMM 
is a hyperbolic Hermitian manifold equipped with

the hyperbolic Hermitian structure   ),( Fg
defined by (3.1) and (3.2).

4. Necessary and sufficient condition for
almost hyperbolic Hermitian manifold on
product of two sasakian manifold to be
Einstein :

From (3.3) and (3.5), by taking account
of (2.5) and (2.6), we have the formulas for

the curvature tensor of  M :
 g ( K (X, Y) Z, W) =g (K(X, Y) Z, W),
 g ( K (X, YY') Z, W) = - aη'(Y')(g(X, Z)η(W)
- g(X,W)η(Z)_,
 g ( K (X', YY') Z, W)=2ag' ('X', YY') g (Z,W),
 g ( K  (X, YY') Z, WW') = ag(X, Z)g'('Y',W')
- a2η'(Y')η'(W')(g(X, Z) - η(X)η(Z))
- a2η(X) η (Z)(g'(Y',W') – η'(Y')η'(W')),
 g ( K  (X', YY') Z', W) = a (a2 + b2) η (W)
(η'(X) g' (Y', Z') – η' (Y') g' (X', Z')),
 g ( K (X, Y) Z, WW') =aη(K(X, Y )Z)η'(W'),

 (3.8)
 g ( K  (X', YY') Z', WW') = g'(K'(X', Y')Z',W')
+2(a2 + b2 – 1){η'(X')η'(W')g'(Y', Z')
–η'(Y')η'(W')g'(X', Z')–η'(X')η'(Z') g'(Y',W')
+η'(Y')η'(Z')g'(X',W')}
– (a2 + b2 – 1)2{η '(X')η'(Z ')g'(Y',W') –
η'(Y')η'(Z')g'(X',W') + η'(Y')η'(W')g'(X', Z')
– η'(X')η'(W')g'(Y', Z') + (a2 + b2 – 1)
{2g'('X',Y')g'('Z',W')+g'('X',Z') g'('Y',W')
– g' ('Y', Z') g' ('X',W').

From (3.8), we have the following,
  (Y, Z) =ρ(Y, Z) + 2a2qη(Y) η (Z),

  (Y, Z') =2a (p + q (a2 + b2))η(Y)η'(Z'),
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  (Y', Z') =ρ'(Y', Z') - 2(a2 + b2 - 1)g'(Y', Z')
             + 2(pa2+a2 + b2-1+q(a2 + b2 - 1)

     (a2 + b2 + 1))η'(Y')η'(Z')         (3.9)
             for Y, Z  M, Y’, Z'  M'.

Thus, from (3.3) and (3.9), (M, g ) is
Einstein if and only if there is a constant λ
satisfying the following conditions:
ρ(Y, Z) + 2a2qη(Y)η(Z) = λg(Y, Z)   (3.10)
2a(p+q(a2+b2))η(Y)η'(Z')=aλη(Y)η'(Z') (3.11)
ρ'(Y'' , Z') - 2(a2 + b2 - 1)g'(Y',Z') + 2(pa2 + a2

+ b2-1+ q(a2 + b2 - 1)(a2 + b2 + 1)) η'(Y') η'(Z')
= λ(g'(Y', Z') + (a2 + b2  1)η'(Y')η'(Z')) (3.12)

for Y, Z  M, Y', Z'  M'.
(3.10) and (3.12) may be rewritten as:
ρ(Y,Z) = λg(Y,Z) - 2a2qη(Y)η(Z)              (3.13)
ρ'(Y', Z') = (λ+ 2(a2 + b2  1))g'(Y', Z')+{λ(a2+
   b2  1) – 2(pa2 + a2 + b2 – 1
      +q(a2+b21)(a2+b2+1)}η'(Y')η'(Z') (3.14)
   for Y, Z  M, Y', Z'  M'.

As M and M' are both Sasakian, so we have
ρ(Y,ξ) = 2pη(Y),
ρ'(Y',ξ') = 2qη'(Y')
(3.15)
          for Y  M, Y'  M'.

Thus, from (3.13) and (3.15), we obtain
2pη(Y) = (λ 2a2q)η(Y).  (3.16)

And from (3.14) and (3.15), we have
2qη'(Y') = (λ(a2 + b2)  2pa2  2q(a2 + b2  1)
(a2 + b2 + 1))η'(Y').                 (3.17)
From (3.16) and (3.17), we have
                    λ = 2p + 2a2q (3.18)

and
      (a2 + b2) λ = 2pa2 + 2q (a2 + b2)2.  (3.19)
From (3.18) and (3.19), we have
     (p + a2q)(a2 + b2) = pa2 + q(a2 + b2)2  (3.20)
and so

pb2 + (a2 + b2)a2q = q(a2+ b2)2.  (3.21)
From (3.21), we have
                    (p  (a2 + b2)q)b2 = 0.     (3.22)
Now, if b0, then from (3.22), we have

p = (a2 + b2)q.  (3.23)
Again, suppose that a0 (as b0), then, from
(3.11), we have

λ = 4p.                                      (3.24)
So, from (3.18) and (3.24), we get

a2q = p,                                      (3.25)
and hence, with (3.23), we get

b2 = 0,                                       (3.26)
which is a contradiction. So, it must follow that
a = 0.
Therefore, from (3.3), we have

 g (Y,Z') = 0,                                 (3.27)
and
 g (Y',Z')=g'(Y',Z')+(b21)η'(Y')η'(Z'), (3.28)
           for Y, Z  M, Y', Z'  M'.
Again, from (3.21), we get
           p = b2q. (3.29)
From (3.18), we get
          λ = 2p. (3.30)
Therefore, we have the following:

Theorem 2: Einstein constant of any
almost hyperbolic Hermitian manifold on
product of two (2p+1)-dimensional Sasakian
manifold is equal to 2p.
From (3.13) and (3.14), taking account of (3.29)
and (3.30), we have

ρ(Y,Z) = 2pg(Y,Z), (3.31)
ρ'(Y',Z') = 2(p + b2  1)g'(Y',Z')  2(b2  1)
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(q +1)η'(Y')η '(Z '),                (3.32)
           for Y, Z  M, Y', Z'  M'.
Again, from (3.9), we get

        (Y, Z') = 0, (3.33)
for Y  M, Z'  M'.

Therefore, summing up the arguments, we
have the following.

Theorem 3: An almost hyperbolic
Hermitian manifold equipped with the hyperbolic
Hermitian structure ( g ,F) taken on product
of two sasakian manifolds (M, , ξ, η, g) and

(M', ', ξ', η', g')  as  M = M × M' is Einstein if
and only if a = 0 where M is an Einstein
Sasakian manifold and M' is an η-Einstein
Sasakian manifold with the Ricci tensor10-12.

         Corollary 1: From theorem 3 η-Einstein
Sasakian manifold M’ is Einstein if p = q. hence
M is the Riemannian product of the same
dimensional Einstein Sasakian manifolds M and
M’.

5. Ricci *-tensor of  M = ( M , g , F) :
By (2.14), (3.4) and (3.8), yields

  *(X,Y) = (1  2aq)(g(X, Y ) “ η(X)η(Y)),

  *(X, YY') = 0,

  *(X', YY') =(1  2ap  (2q + 1)(a2 + b2 – 1))
(g' (X',Y') – η'(X')η'(Y'))                        (3.34)
For X, Y M  and X', Y'  M'.
So, from (3.3) and (3.34), we get

Theorem 4:  M = ( M , g , F) is never
weakly *-Einstein.
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