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Abstract

In this paper we introduce L-fuzzy homomorphism of L-fuzzy
subgroups of finite cyclic groups through an embedding of lattices. We
then form a category whose objects are L-fuzzy subgroups of finite
cyclic groups and morphisms are L-fuzzy homomorphisms. We name
this category L-FCyc and discuss some of its properties.
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1. Introduction

Category Theory took shape in 1945,
when MacLane and and Eilenberg  published
the paper ‘General Theory of Natural
Equivalences’5. Lattice Theory has its origin
in the works of Richard Dedekind in the early
1890’s. Garrett Birkhoff 2 developed it into a
subject of its own right. Fuzzy Set Theory was
introduced by L.A. Zadeh in 1965 15. J.A.
Gougen7 considered a complete and distributive
lattice L as the membership set ,instead of the
interval [0,1] used by Zadeh. In 1971,
A.Rosenfeld10 introduced fuzzy groups and
later on it was generalized into L-fuzzy groups.

We have presented results obtained
in our studies on categories of L-fuzzy groups

in11. In that paper, we have formed four
categories of L-fuzzy groups and discussed
some relations between them. In12, we have
discussed maximal lattices of cyclic groups and
developed a method to construct it for finite
cyclic groups. The method was further
extended to the case of infinite cyclic groups
in 13. As a continuation of these works, in this
paper, we introduce L-fuzzy homomorphism
of L-fuzzy subgroups of finite cyclic groups
through an embedding of lattices. We then form
a category whose objects are L-fuzzy subgroups
of finite cyclic groups and morphisms are
L-fuzzy homomorphisms. We name this
category as L-FCyc and discuss some
categorical properties enjoyed by it.

Throughout this paper L denotes a
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complete and distributive lattice and Li denotes
a sublattice of L. We represent the greatest
element of Li by Ii and the least element by
Oi. Terms and notations in Lattice Theory used
in this paper are as found in Bernard Kolman1,
Davey B.A.4 and Vijay K.Khanna14.

2. Basic concepts :

A relation  on a set A is called a
partial order if  is reflexive, antisymmetric
and transitive. The set A together with the
partial order  is called a partially ordered
set (or a poset) and is denoted as (A,) or
simply A. The elements a and b of a poset A
are said to be comparable if if ab or ba. If
every pair of elements in a poset A is comparable,
we say that A is a linearly (or totally) ordered
set and the partial order in this case is called a
linear (total) order. We also say that such an
A is a chain. For any set S, its power set  
(S) together with set inclusion  is a poset. If
|S|2, it is not totally ordered.The set Z+ of
positive integers together with the usual order
 is a totally ordered set(toset). An element
aA is called a maximal element of A if there
is no element c in A such that a<c and an
element element b  A is called a minimal
element of A if there is no element c in A such
that c<b. An element a A is called a greatest
element of A if x a for all a A. An element
a A is called a least element of A if a  x
for all a  A. The greatest element of a poset,
if it exists, is denoted by I and is called the
unit element. The least element of a poset, if
it exists, is denoted by O and is called the zero
element.

Consider a poset A and a subset B of
A. An element a A is called an upper bound

of B if b  a for all b  B. An element a  A
is called a lower bound of B if a b for all b
 B. An element a A is called a least upper
bound of B or supremum of B denoted as
lub(B) or sup B or   B  if a is an upper bound
of B and a a’, whenever a’ is an upper bound
of B. An element a A is called a greatest
lower bound of B or infimum of B denoted
as glb(B) (or inf B or   B), if a is a lower bound
of B and a’  a, whenever a’ is a lower bound
of B. A lattice is a poset (L, ) in which every
subset {a, b} consisting of two elements has a
least upper bound and a greatest lower bound.
We denote lub ({a,b,}) and glb ({a,b}) by
a  b and a  b respectively and call them the
join and meet respectively of a and b.

For any non-empty set S,(  (S),) is
a poset. For any A, B   (S), AA  B = A   B
and A   B = A   B exist and so it is a lattice.
Another example of a lattice is (Z+,) where
 is defined by a b iff a divides b. Here
a  b =lcm(a,b) and a  b =gcd(a,b). Now for
any positive integer n, let Dn denote the set of
all positive divisors of n. Then Dn together with
the relation ‘divisibility’ is a lattice.

A non-empty subset S of a lattice L is
called a sublattice of L if a, b Sa

  If (A,)  and (B,) are posets,
then (AXB,)is a poset, with partial order 
defined by (a,b) (a’,b’) if  aa’ in A and bb’
in B. The partial order  defined on the
Cartesian product A X B is called the product
partial order. If (L1, ) and (L2,) are lattices,
then (L1XL2,) is a lattice called the product
lattice of L1 and L2 where the partial order 
of L is the product partial order. Here (a1,b1)
(a2,b2)=(a1a2,b1b2) and (a1,b1)(a2,b2)
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=(a1a2,b1b2).

A lattice L is called distributive if for any
elements a,b and c in L, we have the following
distributive properties:
1.    
2.  
A lattice L is said to be complete if every non-
empty subset of it has a glb and lub

If L1 and L2 are complete lattices, then
L1XL2 is also a complete lattice with joins and
meets being formed co-ordinate wise.

2.1. Definition6. Given a universal set
X, a Fuzzy Set on X (or a fuzzy subset of X)
is defined as a function  A:X[0,1]. Its range
is denoted as Im(A).

2.2. Example. Let X={a,b,c,d,e}.
Define A:[0,1] by A(a)=0.1; A(b)=0.2;
A(c)=0.3; A(d)=0.4; A(e)=0.5. Then A is a
fuzzy subset of X and Im(A)={0.1,0.2,
0.3,0.4,0.5}.

2.3. Definition7. If L is a lattice and
X is a universal set, then an L-fuzzy set A on
X (oran L-fuzzy subset A of X) is a function
A : XL. We shall write ALX for A is an L-
fuzzy set on X.

2.4. Example. Let  X={a,b,c,d} and
L= D6={1,2,3,6} under the relation divisibility.
Define  A:XL by A(a)=1, A(b)=2, A(c)=3
and A(d)=6. Then A is an L-fuzzy set on X.

2.5. Definition10. A fuzzy subset A of
a multiplicative group G is said to be a fuzzy

subgroup of G or a fuzzy group on G if for
every x, yG
(1) A (xy)min {A(x), A(y)}  and (ii) A(x-1) =
A(x).

2.6. Example. Let G = {1,-1,i,-i} under
multiplication of complex numbers. Define  A:
G[0,1] by A(1)=1, A(-1) = 0.5, A(i) = A(-i)
=0.25. Then A is a fuzzy subgroup of G.

2.7. Definition9. An L-fuzzy subset
A of G is called an L-fuzzy subgroup of G (or
an L-fuzzy group on G) if

(i) A(xy)  A(x) A(y),  x, y G, and
(ii) A(x-1)A(x), xG.

It may be recalled that for any positive
integer n, Zn={0,1,2,…,n-1} is a group with
respect to addition modulo n.

2.8. Example. Let G be the group
Z6 ={0,1,2,3,4,5} under addition modulo 6.Take
L=D6={1,2,3,6}. Define A: Z6 D6 by A(0)=6,
A(2)=A(4)=2, A(3)=3 and A(1)=A(5)=1. Then
A is an L-fuzzy group on Z6.

2.9. Example. Let V={e,a,b,c} be the
Klein-4 group, whose composition table is as
follows:

Table (i): Definition of binary
operation * on V.

* e a b c
e a a b c
a a e c b
b b c e a
c c b a e



Let L=D6= {1,2,3,6}. Define A:VD6

by A(e)=6,A(a)=2,A(b)=3 and A(c)=1. Then
A is an L-fuzzy group on V.

        2.10. Lemma9. Let G be a group and A
LG.  Then A is an L-fuzzy group on G iff Aa=
{x/xG, A(x)a} is a subgroup of G,
aA(G){bL/bA(e)} ■ 

2.11. Notation9. If G is a group and L
is a lattice, then (G,L) shall denote the collection
of all L-fuzzy groups on G. Hence A(G,L)
means that A is an L-fuzzy group on G.

2.12. Example. Consider the group
<Z18,+18> and the lattice D12 ={1,2,3,4,6,12}.
Define A:Z18D12 by A:0 12, {3,15} 2,
{6,12} 6, 9 4, {2,4,8,10,14,16} 3,
{1,5,7,11,13, 17} 1. Then A is an L-Fuzzy
subgroup of Z18 as can be verified using the
lemma 2.10.

3. L-fuzzy subgroups of finite cyclic groups:

For the sake of completeness, we
shall give a summary of the relevant terms
and results presented in12, as they form the
basis of the ideas developed in the present
paper.

   3.1. Definition12. Let L=({a1,a2,…….an},)
be a lattice. We say that L is a finite lattice
containing n points and write |L|=n.

3.2. Example12. D6= {1,2,3,6} is a
lattice under divisibility. It is a finite lattice
containing four points and so |D6|=4.

3.3. Definition12. Let G be a group,

L be a finite lattice and A: G L be an L-
fuzzy group. A is said to saturate L if
Im(A)=L. If there is an L-fuzzy group A on G
which saturates L, then we say that G
saturates L.

3.4. Example12. Consider G = <Z,+>
and L=({0,1/3,1/2,1},). Define A: G L by
A(0)=1, A(x)=1/2 if x 4Z-{0}, A(x)=1/3 if
x 2Z-4Z and A(x)=0 if x Z-2Z. Then A is
an L-fuzzy group on G with Im (A) =L. Hence,
A as well as G saturates L.

3.5. Example12. Let G=<Z4,+4> and
L=({0,1},). Define A: GL by A(0)=1;
A(x)=0, if x0. Then A is an L-fuzzy group on
G which saturates L and so G also saturates L.

3.6. Example12.  Let G=<Z4,+4> and
L=({0,1/2,1},). Define  A: GL by A(0)=1;
A(x)=0, if x0. Here A is an L-fuzzy group on
G with Im(A)L. Hence A does not saturate
L. But if we define B: GL by B(0)=1;
B(2)=1/2 and B(1)=B(3)=0,then B is an L-
fuzzy group on G which saturates L and hence
G also saturates L.

3.7. Definition12. Let G be a group
and L be a finite lattice. A sublattice L1  of L is
said to be a maximal lattice saturated by G if
there is an A(G,L) which saturates L1 and
there is no B (G,L) which saturates a
sublattice L2 of L with |L2|>|L1|.

         3.8. Example12. Consider the sublattices
L1={0,1} and L2={0,1/2,1} of L ={0,1/3,1/2,1}
and let G=<Z4,+4>. Define  A: GL by A(0)=1;
A(x)=0, if x0. Also define B: GL by
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B(0)=1; B(2)=1/2 and B(1)=B(3)=0. Then L1

is not a maximal lattice of G, because there is
L2 with |L2|>|L1| and B: GL which saturates
L2. It can be shown that L2 is a maximal lattice
for G.

We may recall that a group G is said
to be of prime power order if |G|= pn, for some
prime number p and positive integer n.

3.9. Theorem14. Let G be a  cyclic
group of prime power order. Then the lattice
of all subgroups of G is a chain■ 

3.10. Theorem12. Let G be a cyclic
group of prime power order. Then a maximal
lattice LG for G is a chain isomorphic to the
chain of all subgroups of G■ 

It is well-known that every finite
cyclic group of order n is isomorphic to Zn.
So, henceforth we represent cyclic groups of
order n by Zn.

3.11. Proposition8. The group Zm X
Zn is isomorphic to Zmn if and only if m and n
are relatively prime■ 

        3.12. Proposition8. The group 
i

n

 1
Zmi

is cyclic and isomorphic to 
if and only if the number mi, for i=1,2…n are
pairwise relatively prime■ 

3.13. Theorem12. Suppose n = 
 , where pi

’s are distinct primes.
Then the maximum lattice for Zn = Zp1n1 X
Zp2

n2 ... ....X Zpr
nr is the product lattice of the

maximum chains for the factors Zpi
ni.■ 

3.14. Example. Z6  Z2 X Z3. The
maximum chain for both Z2 and Z3 is D2

={0,1}. Take Z6={0,1} X {0,1,2}={00,01,02,
10,11,12}. Its composition table is given below
in table (ii): Addition on the first digit is modulo
2 and that on second is modulo 3.

Table (ii). Composition table for Z2XZ3.
+ 00 01 02 10 11 12
00 00 01 02 10 11 12
01 01 02 00 11 12 10
02 02 00 01 12 10 11
10 10 11 12 00 01 02
11 11 12 10 01 02 00
12 12 10 11 02 00 01

Its proper subgroups are Z2={00,10} and
Z3={00,01,02}. Its subgroup lattice is given in
figure(i):

Figure (i): Subgroup lattice of Z6

Take L=D2XD2

Z6 
● 
 

 
{00, 10}●                                    ●{00, 01, 02}

 
● 

{00} 
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Figure (ii): The product lattice  L=D2XD2

Define A:Z6  L by A(00) = 11, A(10) = 01,
A(01) = A(02) = 10, A(11) = A(12) = 00. This
is an L-Fuzzy group and D2 x D2 is the
maximum lattice for Z2 x Z3 =Z6.

4. L-fuzzy homomorphisms :

4.1. Definition. Let A( G,L). Then
for aL, the set A-1 (a) ={xG/A(x) =a} is
called the A-pre image of a.

4.2. Definition. Let A(G, L). Then
the collection of all A-pre images

Pr (L) = {A-1 (a)/aL}
is called the A-pre image set of L

4.3. Definition3. Let L and M be
lattices. A mapping f: LM is called a lattice
homomorphism if for all a, b  L

f  and

.

If, in addition, the mapping f is one-to-one and
onto, we call f a lattice isomorphism. If f:
LM is an isomorphism, we say that L is
isomorphic to M.

 11 
● 
 
 

01●                        ●10 
 
 

● 
00 

         4.4. Definition3. Let L and M be lattices.
If f: LM is a one-to-one homomorphism,
then f is said to be an embedding of L into M.
In this case, L is isomorphic to the sublattice f
(L) of M and we say that L is embeddable on
M.

4.5. Example. Consider the lattices D2

and D6.

Fig.(iii): Lattice diagrams of D2 and D6

Define f:D2D6 by f(1)=2 and f(2)=6. Then
f is one-to-one. Moreover
 f()=f(1)=2=6=f(1)  f(2) and

 .

This shows that D2 is embeddable on D6 .

4.6. Definition. Let G1 and G2 be two
finite cyclic groups with maximum lattices L1

and L2 respectively, where L1 is embeddable
on L2. Let A (G1, L1) and B(G2, L2), each
of them saturating its respective lattice. Let f:
L1L2 be a map such that

(1) f(I1)=I2 ,where I1 and I2 are maximum
elements of L1 and L2 respectively, and
(2) f defines an embedding of L1 on L2.

Then a map F: Pr(L1)(L2) is said to
be an L-fuzzy homomorphism from A to B

                        2                                                         
   

          1 
   

D2: 

2                                                           6 
      2      3 

     1 

D6: 

290 Souriar Sebastian, et al.



through f if
      F (A-1 (a)) =B-1(f (a)) for every a in L1.

We shall denote this by writing Ff: AB is a
homomorphism.

4.7. Example. Let G=<Z2, +2> whose
maximum lattice is L1 = D2= {1, 2}. If A:
GL1 is defined by A: 0 2, 1 1, then AA
is a saturating L1-fuzzy subgroup of G. Let H
=<Z6, +6>. Its maximum lattice is L2=D6= {1,
2, 3, 6}. Define B:H L2 by B:0 6,
{2,4} 2, 3 3,{1,5} 1. Then B is a
saturating L2-fuzzy subgroup of H. Define f:
L1L2 by f(2) =6, f(1) =2. Then f  maps the
maximum element of L1 to that of L2 and also
is an embedding of L1 on L2 as showed in
example 4.5. We have, A-1(1) = {1} and A-1

(2) = {0}. Also B-1(6) ={0}, B-1(2)={2,4}, B-1

(3)={3} and B-1(1) = {1, 5}. Hence, (L1) =
{{0}, {1}} and (L2)={{0}, {2, 4}, {3}, {1, 5}}.

Define F : Pr(L1) Pr(L2) by F({0})={0} and
F({1})={2,4}. Now
F(A-1(1))=F({1})={2,4}=B-1(2)=B-1(f(1))  and
F(A-1(2))=F({0})={0}=B-1(6)=B-1(f(2)).

Hence F(A-1(a))=B-1(f(a)) for every a in L1

and so F defines an L-fuzzy homomorphism
from A to B through f. i.e. Ff: AB is a
homomorphism.

5.  The Category L-FCyc :

In this section we introduce and
discuss a new category whose objects are L-
fuzzy subgroups of finite cyclic groups

saturating their respective maximum lattices
and morphisms are L-fuzzy homomorphisms.
We shall start with the definition of a category.

   5.1. Definition3. A category   consists of:

(1) a class of objects, denoted as Ob   and
whose members are denoted as A, B, C,…

(2) a family of mutually disjoint sets {Mor(A,B)}
for all  objects A, B in  whose  elements
f,g,h… Mor(A,B) are called morphisms
and

(3) a family of maps called composition {Mor
(A,B)X Mor(B,C) Mor(A,C)} in which

(f, g)  gf for all A,B,C  Ob  .

satisfying the following axioms:

(1) Associativity: For all A,B,C,D Ob   and
all f Mor(A,B), g Mor(B,C) and h
Mor(C,D), we have, h(gf)=(hg)f

(2) Identity: For each  A Ob   there  is  a
morphism IA Mor(A,A), called the
identity, such that we  have, fIA = f  and
IAg=g  for all B,C Ob  , and all f Mor
(A,B) and g  Mor(C,A).

5.2. Example3.  All sets together with
the set maps and their composition form a
category. This category is denoted by Set.

5.3. Example3. All groups together
with group homomorphisms and their
composition form a category which will be
denoted by Grp.

5.4. Example3. Topological spaces
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together with continuous functions and their
composition form a category denoted as Top.

5.5. Example3. A map f between two
posets is said to be order–preserving if ab
implies f (a) f (b). All posets together with
order-preserving maps and their composition
is a category. This category is denoted by
Poset.

5.6. Example3.All lattices together
with order-preserving maps and their compo-
sition is a category. This category is denoted
by Lat.

5.7. Theorem. L-fuzzy subgroups of
finite cyclic groups which saturate their
respective maximum lattices together with L-
fuzzy homomorphism of L-fuzzy groups
through an embedding form a category.

Proof: Objects are L-fuzzy subgroups
of finite cyclic groups which saturate their
respective maximum lattices. Morphisms are
L-fuzzy homomorphisms of L-fuzzy groups
through an embedding.

Composition of morphisms: Let G1,
G2 and G3 be finite cyclic groups with maximum
lattices L1, L2 and L3 respectively where L1 is
embeddable on L2 and L2 is embeddable on
L3. Let A (G1, L1), B (G2, L2) and C (G3,
L3), each of them saturating its respective
maximum lattice. Let f: L1L2 and g: L2L3

be maps such that f(I1)=I2, g(I2)=I3 and f is an
embedding of L1 on L2 and g is an embedding
of L2 on L3. Then gf is an embedding of L1 on
L3. Let Ff: AB and Gg: BC be homo-

morphisms. Then F:Pr(L1)Pr(L2) and G:Pr(L2)
Pr(L3) through f and g respectively are
given by

      F(A-1(a))=B-1(f(a)) for all a in L1 and
      G(B-1(b))=C-1(g(b)) for all b in L2.
Now, G(B-1(f(a)))=C-1(g(f(a)) for all a in L1.
i.e., G( F(A-1(a))= C-1((gf)(a)) for all a in L1.
Define GF  : Pr(L1) (L3)  by ( GF)(A-1(a))=
G( F(A-1(a))  for all a in L1. Then GF is an L-
fuzzy homomorphism from A to C through gf.
i.e., GFgf:A C is a homomorphism. This is
the composite of Ff and Gg..

Associativity: Let G4 be a finite cyclic
group with maximum lattice L4 where L3 is
embeddable on L4. Let D(G4, L4),  saturating
its  maximum lattice. Let h: L3L4  be a map
such that h(I3)=I4 and h is an embedding of L3

on L4.Let Hh:CD be another morphism in
the category. Then, H(C-1(c))=D-1(h(c))  for
all c in L3. Now, H(GF(A-1(a))=H(C-1((gf)(a))=
D-1(h(gf)(a)). Also, (HG )(F(A-1(a)))=(HG)(B-1

(f(a)))=H( G(B-1(f(a))= H(C-1(gf)(a)))=D-1

(h(gf)(a))). It follows that Hh(GgFf)= (HhGg)
(Ff).

Identity: For each A in the category
and the corresponding lattice L1, let e:  L1L1

be defined by e (a) =a for all a in L1 and
I:Pr(L1)Pr(L1) be an identity mapping on
Pr(L­1). Then Ie: AA is an isomorphism. We
shall show that Ie is the identity of A. Suppose
that,   Ff:  AB is a homomorphism. Then
F(A-1(a))=B-1(f(a)) for all a in L1. Also Ie (A-1

(a)) =A-1 (e (a)) =A-1 (a) for all a in L1. Hence,
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(FfIe) (A-1 (a)) = Ff ((Ie) (A-1 (a)) = Ff (A-1 (a)).
Thus FfIe=Ff.

Similarly,  IeGg=Gg for Gg: BA.
Hence, Ie is the identity of A .That is,1A=Ie■ 

5.8. Notation. We shall denote the
above category by L-FCyc. Whenever we say
that A   is an object in L-FCyc, we shall mean
that there is a finite cyclic group G1 and a
corresponding maximum lattice L1 such that
A (G1, L1). Similarly, the statement Ff:  AB
is a morphism in L-FCyc shall imply that A
(G1, L1), B (G2, L2), F: Pr L1Pr L2 and
that f:  L1L2 is an embedding such that F (A-1

(a)) =B-1 (f (a)) for every point a in L1.

5.9. Proposition. Let Ff:  AB and
Fg:  AB be two morphisms in L-FCyc. Then
f = g.

Proof: Given Ff:  AB. Hence, F(A-1

(a)) =  B-1(f(a)) for all a in L1. Also Fg:  AB.
Hence,  F(A-1(a))=B-1(g(a)) for all a in L1. 
B-1(f(a)) =B-1(g(a))  for all a in L1.  f(a)=g(a)
for all a in L1.   f=g■ 

5.10. Proposition  Let Ff:  AB and
Gf:  AB be two morphisms in L-FCyc. Then
F = G.

Proof: Given Ff: AB. Hence, F(A-1

(a)) = B-1(f(a)) for all a in L1. Gf: AB. Hence,
G(A-1(a)) = B-1(f(a)) for all a in L1.  F (A-1

(a))=G(A-1(a))  for all a in L1. F=G■ 

6. Properties of L-FCyc :

In this section we discuss some
properties of the category L-FCyc. As this
requires some more results from category, we
shall present them first.

6.1. Definition3. Let    be
categories. Let  consist of
(1) a map ob ob  
(2) a family of maps {
     
     for all A,B  

  is called a covariant functor (or
simply a functor) if   complies with the
following axioms:

=  for all A  
 for all 

      for all A,B,C  

6.2. Definition3. Let   be
categories. Let   consist of
(1)  a map  ob  
(2)  a family of maps {
      
      for all A,B  
Then   is called a contravariant functor if

   complies with the following axioms:
=  for all  A  

  for all 
        for all A,B,C
       .

6.3. Example3. Consider the category
Grp. Its objects are sets with an additional
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structure. The morphisms are maps compatible
with the structure of the sets. The composition
is juxtaposition. If one assigns to every object,
the underlying set and to every morphism the
underlying set map, then this defines a covariant
functor from Grp to Set. This kind of functors
are called forgetful  functors.

6.4. Example.  Let A:  ZmLm and
B:  ZnLn be objects in L-FCyc. If Ff 
Mor(A,B), then f : LmLn is an embedding
such that f(Im)=In and for F:Pr(Lm)Pr(Ln),
F(A-1(a))=B-1(f(a)) for every a in Lm. Consider
the category Lat with lattices as objects and
lattice homomorphisms as morphisms. Define

 : L-FCyc Lat    as follows:
 (A)=Lm   and  (Ff)=f.

Assume that I:Pr (Lm)Pr( Lm) is the identity
mapping on Pr( Lm) and e:LmLm is the
identity mapping on  Lm. Then 1A= Ie  and  

=e. Further, we get
(1)   (1A) =  (Ie) =  e=   =   and
(2)  (Ff Gg)=  (FGfg) =fg=  (Ff)  (Gg)
Hence,   is a covariant functor from L-FCyc
to Lat.

6.5. Definition3. Let   be a category..
Given A   and f Mor(B,C), we define
a map Mor (A,f): Mor(A,B) Mor(A,C)  by

Mor(A,f)(g)=fg, for all g Mor (A,B).

We also define a map Mor (f,A): Mor(C,A)
Mor(B,A) by

Mor(f,A)(h)=hf ,for all h Mor (C,A).

6.6. Proposition3. Let   be a category
and  A  . Then Mor(A,-):  Set with

         Ob B Mor(A,B)  Ob Set 
        Mor (B,C) f Mor(A,f)   Mor(A,B),
Mor(A,C))
is a covariant functor. Furthermore, Mor(-, A):

 Set with
Ob B Mor(B,A)  Ob Set 
Mor (B,C) f  Mor(f,A)Mor (Mor
(C,A), Mor(B,A))

is a contravariant functor■ 

6.7. Remark3. The above proposition
says that corresponding to any object A in a
category  , one can form a covariant functor
Mor(A,-) and a contravariant functor Mor
(-, A). Of these, Mor(A,-) is called covariant
representable functor and Mor(-,A) is called
contravariant representable functor.

6.8. Definition3. Let   be a category
and f a morphism in  . f is called a mono-
morphism if the map Mor(B, f) is injective (i.e.
one-to-one) for all BOb  .

6.9. Definition3. Let   be a category
and f a morphism in  . f is called an epimo-
rphism if the map Mor(f,B) is injective for all
BOb  .

6.10. Lemma3. (a). f  Mor(A,B) is a
monomorphism in   if and only if fg=fh implies
g=h for all C   and for all g,h   Mor(C,A).
(b). f  Mor(A,B) is an epimorphism in   if
and only if gf=hf implies g=h for all C  
and for all  g,h  Mor(B,C)■ 

The above lemma enables us to
roughly define a monomorphism as a left
cancellable morphism; and an epimorphism

294 Souriar Sebastian, et al.



as a right cancellable morphism.

6.11. Theorem. Every  morphism in
L-FCyc is a monomorphism

Proof: Let Ff : AB   be a morphism
in L-FCyc. Let the groups corresponding to A
and B be G1 and G2; and the lattices be L1 and
L2. Then F: Pr(L1)Pr(L2) and f : L1L2 is
the embedding of lattices. Let C be any object
of L-FCyc. Then Cmk(G3,L3) for some group
G3 and the corresponding maximum lattice L3.
Also let  Gg and Hh be any two morphisms in
Mor(C,A). Then G, H: Pr(L3)Pr(L1) and g,
h: L3L1. Then FGfg, FHfh : CB are morphisms
in Mor(C,B). Hence,(FG)(C-1(a))=B-1((fg)(a))
for all a in L3.
Similarly, (FH)(C-1(a)) =B-1((fh)(a))   for all a
in L3.
Suppose that  FfGg=FfHh. i.e. FGfg = FHfh .  Then
(FG)(C-1(a))= (FH)(C-1(a)) for all a in L3

B-1((fg)(a))  = B-1((fh)(a))  for all a in L3

(fg)(a)  =(fh)(a)  for all a in L3

f(g(a))  =f(h(a))  for all a in L3

g(a)  =h(a)  for all a in L3

g=h.
By assumption, Gg, Hh  :  CA   are homomor-
phisms. g =h implies that Gg , Hg  :  CA   are
homomorphisms. Hence, by  proposition 5.10,
G=H. Therefore Gg=Hh. This shows that Ff is
a monomorphism■ 

6.12. Remark. All the morphisms in
L-FCyc are not epimorphisms. We give below
an example to prove this.

6.13. Example. Let Z1={0} with the
maximum lattice, L1={(O1=)I1}, the one-point
lattice; Z2={0,1} with the maximum lattice,
L2={O2,I2} and Z6={0,1,2,3,4,5} with the
maximum lattice L3={O3(=1), 2, 3, I3(=6)}.
Define A:Z1L1, B:Z2L2  and C:Z6L3  by

A(0)=I1

B(0)=I2,B(1)=O2  and

C(0)=I3,C(2)=C(4)=2,C(3)=3 and C(1)=C(5)=O3.

Define F  : Pr(L1) Pr(L2)  by F(A-1)(I1)={0};
G : Pr(L2) Pr(L3) by G(B-1)(I2)={0} and
G(B-1)(O2)={2,4} and H : Pr(L2) (L3) by
H(B-1) (I2)={0} and H(B-1)(O2)={3}. Define
f: L1L2 by f(I1)=I2; g :L2L3 by  g(I2)=I3,
g(O2)=2 and h :L2L3 by h(I2)=I3, h(O2)=3.
Then Ff:AB, Gg,Hh :BC. Here Gg Hh.
But GgFf = HhFf ■ 

 7. Concluding remarks

In this paper, we have constructed a
category L-FCyc whose objects are L-fuzzy
subgroups of finite cyclic groups (where L in
this case is the maximum lattice of the group
concerned) and the morphisms are L-fuzzy
homomorphisms defined through an embedding
of lattices. Some properties of  L-FCyc are
discussed here. We have proved that every
morphism in this category is a monomorphism.
We have also constructed a counter example
to show that there are morphisms in this
category which are not epimorphisms. We are
continuing the investigation and hope to get
more interesting results.
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