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Abstract

A set S of vertices of a graph G is a total neighborhood set of
G if G is the union of the subgraphs induced by the closed neighborhoods
of the vertices in S and for every vertex uV there exists a vertex v S
such that u is adjacent to v. The total neighborhood number nt(G) of G
is the minimum cardinality of a total neighborhood set of G. A total
neighborhood nomatic partition of G is a partition {V1, V2, ..., Vk} of V in
which each Vi is a total neighborhood set of G. The total neighborhood
nomatic number ntn(G) of G is the maximum order of a partition of the
vertex set of G into total neighborhood sets. In this paper, we obtain
results about two parameters, the total neighborhood number and total
neighborhood nomatic number.
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1. Introduction

All graphs considered here are finite,
undirected without loops and multiple edges.
Let G=(V, E) be a graph with p vertices and q
edges. For graph theoretic terminology we
refer to Harary3.

A subset D of V is called a dominating
set of G if every vertex in V – D is adjacent to

some vertex in D. The domination number (G)
of G is the minimum cardinality of a dominating
set of G. A recent survey of (G) is given in
the book by Kulli4.

A dominating set D of a graph G
without isolated vertices is called a total dominating

set of G if the induced subgraph D  has no
isolated vertices. The total domination number
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t(G) of G is the minimum cardinality of a total
dominating set of G.  This concept was
introduced by Cockayne et al.1.

For any vertex vV,  the open
neighborhood of V is the set N(v)={uV, uvE}
and the closed neighborhood of v is the set
N[v]=N(v){v}.

A set S of vertices of G is a neighborhood

set if  
v S

G N v


 . The neighborhood number

n0(G) is the minimum cardinality of a neigh-
borhood set of G, see7.

A set S of vertices of G is a total neigh-

borhood set if  
v S

G N v


  and for every

vertex u in V, there exists a vertex v in S such
that u is adjacent to v. The total neighborhood
number nt(G) of G is the minimum cardinality
of a total neighborhood set of G. This concept
was introduced by Kulli and Patwari in5.

Let (G) denote the minimum degree

and  x x        the least (greatest) integer greater
(less) than or equal to x.

We note that nt(G) is only defined for
G with (G)1.

We need the following result.

Theorem A6. For a graph pC , p 5,

 0 3pn C  .

2. Total Neighborhood Number:

Exact values of n t(G) for  some
standard graphs are given below.

Proposition 1. For any complete
graph Kp with p 2 vertices,

nt(Kp) = 2.

Proposition 2. For any complete
bipartite graph Km, n with 1 m n,

nt(Km, n) = m + 1.

Proposition 3. For any cycle Cp with
p 3 vertices,

  2
.

3t p
pn C     

Proposition 4. For any path Pp with
p 3 vertices,

  2
.

3t p
pn P     

Proposition 5. For any wheel Wp with
p 4 vertices,

nt(Wp) = 2.

The following results give lower bounds
for nt(G).

Theorem 6. For any graph G without
isolated vertices,

n0(G) nt(G).

Theorem 7. For any graph G without
isolated vertices,

(G) t(G) nt(G).

Theorem 8. If a nontrivial connected
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graph G with a t-set S and V–S is independent,
then

t(G) =nt(G).

Proof: Let S be a t-set of G. If V – S

is independent, then  
u s

G N u


 . Hence

S is a nt-set of G. Thus nt(G)  t(G). By
Theorem 7, we have t(G)nt(G). Thus t(G)
= nt(G).

Remark 9. If G is a tree with m 2
cutvertices and every cutvertex is adjacent
with at least one endvertex, then

n0(G) =(G) = t(G) = nt(G).

Theorem 10. For any connected graph
G with p  3 vertices,

2 nt(G) p – 1.

Furthermore, both inequalities hold if G is C3

or P3.

Theorem 11. Let G be a graph without
isolated vertices. Then

nt(G) = p
if and only if G = mK2, m  1.

       Proof: Suppose nt(G)=p. Let G1, G2, ...,
Gm be the components of G. Each Gi, 1 i 
m, has pi – 1 vertices and Gi K2. By Theorem
10,

nt(Gi)pi – 1, 1 i m.

We have

   
1

m

t t i
i

n G n G




 
1

1
m

i
i

p


 
p – m

which is a contradiction. Thus Gi = K2, 1 i 
m and hence G = mK2, m1.

Conversely, suppose G = mK2, m1.
Obviously nt(G) = p.

Theorem 12. Let S be a total neighbor-
hood set of G. If V – S is independent, then

0(G)   nt(G) 20(G).

Proof: Suppose S is a total neighbor-
hood set of G and V – S is independent. Then

|V – S| 0(G)
or p – nt(G) 0(G).
Thus p – 0(G) nt(G).
or 0(G) nt(G).

We now prove the upper bound. Suppose
D is a minimum vertex cover of G. Since G
has no isolated vertices, there exists a vertex
vi for every vertex ui

 
D such that uivi is an

edge.

Let  1 2, ,... .
o

S D v v v 

Then S is a total neighborhood set of G. Thus

nt(G)  | S |

or nt(G) 20(G).

Theorem 13. Let G be an r-regular
graph with p vertices and r  1. Then

nt(G) p – r + 1



and this bound is sharp.

Proof: Let uV. A set D=(V–N(u))
{w} is a total neighborhood set of G where
w N(u). Thus

nt(G)  | D | = | (V – N(u)) {w} |
or nt(G) p – r + 1

The complete graphs Kp, p2, achieve
this bound.

Theorem 14. If T is a tree with m 2
cutvertices, then

  2.tn T 

Proof: Let u, v be two endvertices of
T. Then u, v are adjacent vertices of degree

p – 1 in T . Hence S = {u, v} is a total neigh-

borhood set of T . Thus
   2tn T S 

and since nt(G) 2, we see that
   2.tn T 

Theorem 15. If T is a tree with m 2
cutvertices, then

     .t tn T n T p 

Furthermore, equality holds if and only if T is
P4 or P5 or P6.

        Proof: If T is a tree with m2 cutvertices,
then clearly nt(T) m. By Theorem 14,
   2tn T  . Thus

     2 .t tn T n T m p   

We now prove the second part.

Suppose      .t tn T n T p   Since

   2tn T  , we have nt(T)= p–2. Assume T

has at least 3 endvertices. Then nt(T) p – 3;
a contradiction. Thus T has exactly 2 endver-
tices. Then T is a path.

Suppose T=Pp, p7. By Proposition 4,

   2 2
3t p
pn P p     

, which is a contradi-

ction.

Suppose T=P2 or P3. Then  T has

isolated vertices and   tn T  does not exist.

Hence G = P4 or P5 or P6.

Converse is obvious.

Theorem 16. If Cp is a cycle with p7
vertices, then

   3.t pn C 

Proof: By Theorem A,   0 3,pn C 

p  5. By Theorem 6,     0 .p t pn C n C

Thus   3 t pn C , p 7. Let u1, u2, ..., up be

the vertices of Cp, p 7. In  pC , we see that

      1 2 3, .p pN u N u C u u    A set

S = {u1, u2, ur} is a total neighborhood set of
 

pC , where N[ur] contains u1, u2, u3 and up.
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Thus    3t pn C  . Hence    3.t pn C 

Theorem 17. If Cp is a cycle with p 
7 vertices, then

     2 11.
3t p t p

pn C n C 
 

Proof: By Proposition 3 and Theorem
16, the result follows.

Theorem 18. If both G and  G  are
connected graphs with p 4 vertices, then

      2 1t tn G n G p  

      2 . 1t tn G n G p  .

Furthermore, the bounds are attained
if and only if G = P4.

Proof: Suppose G and  G are
connected. By Theorem 10, nt(G) p – 1 and
   1.tn G p   Hence both inequalities hold.

The second part is easy to prove, so
we omit proof.

3. Total Neighborhood Nomatic Number:

The domatic number d(G) of G is the
maximum order of a partition of the vertex set
of G into dominating sets. This concept was
introduced by Cockayne et. al.1. The total
domatic number dt(G) of G is the maximum
order of a partition of the vertex set of G into
total dominating sets. This concept was

introduced by Cockayne et al.1. In this section,
we establish some basic results on the total
neighborhood nomatic number of a graph.

In5, Kulli and Patwari introduced the
concept of total neighborhood nomatic number
as follows:

Let G be a graph without isolated
vertices. A total neighborhood nomatic partition
of G is a partition {v1, v2, ... , vk} of V in which
each Vi is a total neighborhood set of G. The
total neighborhood nomatic number ntn(G) of
G is the maximum order of a partition of the
vertex set of G into total neighborhood sets.

The total neighborhood nomatic number
of some standard graphs are given below.

Proposition 19. If Kp is a complete
graph with p 2 vertices, then

   .
2tn p
pn K     

Proposition 20. If Cp is a cycle with
p  3 vertices, then

ntn(Cp) = 1.

Proposition 21. If Kr, s is a complete
bipartite graph with 1 r  s, then

ntn(Kr, s) = 1.

Proposition 22. If Wp is a wheel with
p  4 vertices, then

ntn(Wp) = 2.

It is easy to see the following result.
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Proposition 23. If G is a graph without
isolated vertices, then

ntn(G)  (G).

Proposition 24. If G is a nontrivial
tree, then ntn(G) = 1.

Proposition 25. If G is a graph without
isolated vertices, then

nt(G) ntn(G) p.

Proof: Suppose {v1, v2, ... ,  tnnv } is a
total neighborhood nomatic partition of G. Then

|Vi|  nt(G) for each i.

Hence
 

    .t
tn

p n G
n G



Thus nt(G) ntn(G) p.

From Proposition 23 and Proposition
25, we have

Proposition 26. If G is a graph without
isolated vertices, then

 
     min ,   tn

t

pn G G n G   
 

.

Proposition 27. If G is a graph without
isolated vertices, then

ntn(G)   dt(G).

Proof: By Theorem 7, t(G)  nt(G).
Hence ntn(G) dt(G).

Theorem 28. If G is a graph without
isolated vertices, then

nt(G) + ntn(G) p + (G).

Furthermore, equality holds if and only if G =
mK2, m1.

Proof: By Theorem 11 and Proposition
22, the inequality follows:

We now prove the second part.

Suppose nt(G) + ntn(G) = p + (G).
Assume nt(G) < p. Then nt(G) > (G), which
is a contradiction. Thus nt(G) = p and hence
by Theorem 11, G=mK2, m 1.

Converse is obvious.
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