Prime Labeling of Some Product Graphs

L. MEENAKSHI SUNDARAM*, A. NAGARAJAN, S. NAVANEETHAKRISHNAN and A. NELLAI MURUGAN

(Acceptance Date 14th July, 2013)

Abstract

Prime labeling originated with Entringer and was introduced by Tout, Dabboucy and Howalla ${ }^{4}$. A Graph $G(V, E)$ is said to have a prime labeling if its vertices are labeled with distinct integers $1,2,3, \ldots,|\mathrm{~V}(\mathrm{G})|$ such that for each edge xy the labels assigned to x and y are relatively prime. A graph admits a prime labeling is called a prime graph. In this paper, we prove that $\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{2}\right)^{\mathrm{k}},\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{3}\right)^{\mathrm{k}}$ and $\mathrm{C}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}$ are prime graphs.

1. Introduction

A simple graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to have a prime labeling (or called prime) if its vertices are labeled with distinct integers $1,2,3, \ldots,|\mathrm{~V}(\mathrm{G})|$, such that for each edge $x y \in E(G)$, the labels assigned to x and y are relatively prime ${ }^{1}$.

We begin with listing a few definitions\notations that are used.

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is said to have order $|\mathrm{V}|$ and size $|\mathrm{E}|$.
- A vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G})$ of degree 1 is called pendant vertex.
- P_{n} is a path of length $\mathrm{n}-1$.
- Astar S_{n} with n -spokes is given by (V, E) where $V\left(S_{n}\right)=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{E}\left(\mathrm{S}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{0} \mathrm{v}_{\mathrm{i}} /\right.$ $\mathrm{i}=1,2, \ldots, \mathrm{n}\} . \mathrm{V}_{0}$ is called the centre of the
star.
- Let G be any graph and S_{m} be a star with m spokes. We denote by $\mathrm{G} \otimes \mathrm{S}_{\mathrm{m}}$ the graph obtained from G by identifying one vertex of G with any vertex of S_{m} other than the centre ${ }^{3}$ of S_{m}.
- A regular bamboo tree is one point union of $\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}\right)^{\mathrm{k}}$ where k is the number of copies ${ }^{3}$ of $\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}$.

2. Main Results

Theorem $2.1\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{2}\right)^{\mathrm{k}}$ is prime.

Proof:

The graph $\left(\mathrm{P}_{\mathrm{n}} \mathrm{S}_{2}\right)^{\mathrm{k}}$ has $\mathrm{kn}+1$ vertices and kn edges.
$\mathrm{V}=\left\{\mathrm{u}, \mathrm{vi}^{(\mathrm{j})}, \mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{n}-2,1 \leq \mathrm{j} \leq \mathrm{k}\right\}$
$\mathrm{E}=\left\{\mathrm{uv}_{1}{ }^{(\mathrm{j})} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \cup\left\{\mathrm{vi}_{\mathrm{i}}^{(\mathrm{j})} \mathrm{vi}_{\mathrm{i}}^{(\mathrm{j}+1)} / 1 \leq \mathrm{i} \leq \mathrm{n}-3,1 \leq \mathrm{j} \leq \mathrm{k}\right\}$
$\cup\left\{\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})} \mathrm{x}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \quad \cup\left\{\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})} \mathrm{y}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\}$
Define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2,3, \ldots, \mathrm{kn}+1\}$ by $\mathrm{f}(\mathrm{u})=1$

Case1: \mathbf{n} is even

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right)=\mathrm{n}(\mathrm{j}-1)+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-2,1 \leq \mathrm{j} \leq \mathrm{k}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}{ }^{(\mathrm{j})}\right)\right)=\operatorname{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{i}+1, \mathrm{n}(\mathrm{j}-1)\right.$
$+i+2)=1,1 \leq i \leq n-3,1 \leq j \leq k$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\operatorname{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}-1, \mathrm{n}(\mathrm{j}-1)$ $+n) \quad=1,1 \leq j \leq k$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2} \mathrm{j}^{\mathrm{j})}\right), \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\mathrm{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}-1, \mathrm{n}(\mathrm{j}-1)$ $+\mathrm{n}+1)=1,1 \leq \mathrm{j} \leq \mathrm{k}$

Case 2: \mathbf{n} is odd
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right)=\mathrm{n}(\mathrm{j}-1)+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-3,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1$ $(\bmod 2)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right)=\mathrm{n}(\mathrm{j}-1)+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-2,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0$ (mod2)
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$f\left(x_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)-1,1 \leq j \leq k, j \equiv 1(\bmod 2)$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$f\left(y_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+2,1 \leq j \leq k, j \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\mathrm{j})}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}{ }^{(\mathrm{j})}\right)\right)=\operatorname{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{i}+1, \mathrm{n}(\mathrm{j}-1)\right.$
$+i+2)=1,1 \leq i \leq n-4,1 \leq j \leq k$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3} 3^{\mathrm{j})}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2} \mathrm{j}^{(\mathrm{j})}\right)\right)=\mathrm{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}-2, \mathrm{n}(\mathrm{j}-1)$
$+\mathrm{n})=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$\left.\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3} \mathrm{~B}^{\mathrm{j}}\right)\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)\right)=\mathrm{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}-2, \mathrm{n}(\mathrm{j}-1)$
$+\mathrm{n}-1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\mathrm{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}, \mathrm{n}(\mathrm{j}-1)+\mathrm{n}-1)$
$=1,1 \leq j \leq k, j \equiv 1(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\mathrm{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}-1, \mathrm{n}(\mathrm{j}-1)$
$+n) \quad=1,1 \leq j \leq k, j \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\mathrm{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}, \mathrm{n}(\mathrm{j}-1)$
$+n+1) \quad=1,1 \leq j \leq k, j \equiv 1(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\operatorname{GCD}(\mathrm{n}(\mathrm{j}-1)+\mathrm{n}-1, \mathrm{n}(\mathrm{j}-1)$ $+\mathrm{n}+1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$

Therefore, $\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{2}\right)^{\mathrm{k}}$ admits prime labeling and hence, $\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{2}\right)^{\mathrm{k}}$ is a prime graph ${ }^{2}$.

Example 2.2

Fig 1. $\left(\mathrm{P}_{6} \otimes \mathrm{~S}_{2}\right)^{5}-\mathrm{n}$ even

Fig 2. $\left(\mathrm{P}_{5} \otimes \mathrm{~S}_{2}\right)^{5}-\mathrm{n}$ odd
Theorem $2.3 \quad\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{3}\right)^{\mathrm{k}}$ is prime
Proof:
Let u be the initial vertex. The graph has $\mathrm{k}(\mathrm{n}+1)+1$ vertices and $\mathrm{k}(\mathrm{n}+1)$ edges.
$\mathrm{V}=\left\{\mathrm{u}, \mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}, \mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{n}-2,1 \leq \mathrm{j} \leq \mathrm{k}\right\}$

$$
\begin{aligned}
& \mathrm{E}=\left\{\mathrm{uv}_{1}{ }^{(\mathrm{j})} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}}^{(\mathrm{j})} \mathrm{v}_{\mathrm{i}+1}{ }^{(\mathrm{j})} / 1 \leq \mathrm{i} \leq \mathrm{n}-3\right. \\
& 1 \leq \mathrm{j} \leq \mathrm{k}\} \cup \\
& \left\{\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})} \mathrm{x}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \cup\left\{\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})} \mathrm{y}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \cup \\
& \left\{\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})} \mathrm{z}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \\
& \text { Define } \mathrm{f}: \mathrm{V} \rightarrow\{1,2,3, \ldots, \mathrm{k}(\mathrm{n}+1)+1\} \text { by } \mathrm{f}(\mathrm{u})=1 \\
& \text { Case } 1 \text { Suppose } \mathrm{n}=1(\bmod 2) \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right) \quad=(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-3,1 \leq \mathrm{j} \leq \mathrm{k} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}^{\left(\mathrm{j}^{(j)}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}}\right. \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)-1,1 \leq \mathrm{j} \leq \mathrm{k} \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k} \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}
\end{aligned}
$$

$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}{ }^{(\mathrm{j})}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)$
$+\mathrm{i}+1,(\mathrm{n}+1)(\mathrm{j}-1+\mathrm{i}+2)=1,1 \leq \mathrm{i} \leq \mathrm{n}-4,1 \leq \mathrm{j} \leq \mathrm{k}$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)$
$+\mathrm{n}-2,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n})=1,1 \leq \mathrm{j} \leq \mathrm{k}$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-1)=1,1 \leq \mathrm{j} \leq \mathrm{k}$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}, \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}\right.$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+1)=1,1 \leq \mathrm{j} \leq \mathrm{k}$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}\right.$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+2)=1,1 \leq \mathrm{j} \leq \mathrm{k}$

Case 2 Suppose $\mathrm{n} \equiv 0(\bmod 2)$
Subcase2(i) $\quad \mathbf{n}=4(\bmod 6)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right)=(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-3,1 \leq \mathrm{j} \leq \mathrm{k}$
$f\left(v_{n-2}{ }^{(j)}\right)=f\left(v_{n-3}{ }^{(j)}\right)+2,1 \leq j \leq k, j \equiv 0(\bmod 2)$
$f\left(x_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)-1,1 \leq j \leq k, j \equiv 0(\bmod 2)$
$f\left(y_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+1,1 \leq j \leq k, j \equiv 0(\bmod 2)$
$f\left(z_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+2,1 \leq j \leq k, j \equiv 0(\bmod 2)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(1)}\right)=\mathrm{f}\left(\mathrm{v}_{\left.\mathrm{n}-3^{(1)}\right)+3}\right.$
$f\left(x_{1}\right) \quad=f\left(v_{n-2}^{(1)}\right)-1$
$\mathrm{f}\left(\mathrm{y}_{1}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(1)}\right)-2$
$\mathrm{f}\left(\mathrm{z}_{1}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(1)}\right)+1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2} \mathrm{j}^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2), \mathrm{j} \neq 1$, $1 \leq j \leq k$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2), \mathrm{j} \neq 1$
$f\left(y_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+2,1 \leq j \leq k, j \equiv 1(\bmod 2), j \neq 1$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+3,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2), \mathrm{j} \neq 1$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(1)}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(1)}\right)\right)=\operatorname{GCD}(\mathrm{n}-2, \mathrm{n}+1)=1$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(1)}, \mathrm{f}\left(\mathrm{y}_{1}\right)\right)=\operatorname{GCD}(\mathrm{n}+1, \mathrm{n}-1)=1\right.$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)$
$+\mathrm{n}-2,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n})=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}, \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}\right.$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+2)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-$
$2,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \neq 1, \mathrm{j} \equiv 1(\bmod 2)$

Subcase2(ii) $\quad \mathbf{n}=\mathbf{0}(\bmod 6)$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right)=(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{i}+1,1$ ddiddn $-3,1 \leq \mathrm{j} \leq \mathrm{k}$
$f\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0,2,4(\bmod 6)$
$f\left(x_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)-1,1 \leq j \leq k, j \equiv 0,2,4(\bmod 6)$
$f\left(y_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+1,1 \leq j \leq k, j \equiv 0,2,4(\bmod 6)$
$f\left(\mathrm{z}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0,2,4(\bmod 6)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2} \mathrm{2}^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\left.\mathrm{n}-3^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1,3(\bmod 6)}\right.$
$f\left(x_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+1,1 \leq j \leq k, j \equiv 1,3(\bmod 6)$
$f\left(y_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+2,1 \leq j \leq k, j 1,3(\bmod 6)$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+3,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1,3(\bmod 6)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right)+3,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 5(\bmod 6)$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \quad=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)-1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 5(\bmod 6)$
$f\left(y_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)-2,1 \leq j \leq k, j \equiv 5(\bmod 6)$
$f\left(z_{j}\right) \quad=f\left(v_{n-2}{ }^{(j)}\right)+1,1 \leq j \leq k, j \equiv 5(\bmod 6)$
$\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+$ $\mathrm{n}-1,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n})=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1,3(\bmod 6)$ $\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}, \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-1\right.$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1,3(\bmod 6)$ GCD $\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-$ $1,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+2)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1,3(\bmod 6)$ $\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-$ $2,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 5(\bmod 6)$ $\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)$ $+\mathrm{n}+1,(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n})=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 5(\bmod 6)$ $\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}, \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)\right)=\operatorname{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+1\right.$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}-1)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 5(\bmod 6)$ $\operatorname{GCD}\left(\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right), \mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)\right)=\mathrm{GCD}((\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+1$, $(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{n}+2)=1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 5(\bmod 6)$

Subcase 2(iii) $\quad \mathbf{n} \equiv 2(\bmod 6)$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{(\mathrm{j})}\right)=(\mathrm{n}+1)(\mathrm{j}-1)+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-3,1 \leq \mathrm{j} \leq \mathrm{k}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3} \mathrm{3}^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+3,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 1(\bmod 2)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-3}{ }^{(\mathrm{j})}\right)+2, \quad 1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)-1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+1,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}{ }^{(\mathrm{j})}\right)+2,1 \leq \mathrm{j} \leq \mathrm{k}, \mathrm{j} \equiv 0(\bmod 2)$

In this case also for every edge $u v \in E(G)$, it can be verified that GCD (f(u), $f(v))=1$.

Therefore, $\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{3}\right)^{\mathrm{k}}$ admits prime ${ }^{4}$ labeling and hence, $\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{S}_{3}\right)^{\mathrm{k}}$ is a prime graph.

Example 2.4

Fig 3. $\left(\mathrm{P}_{9} \otimes \mathrm{~S}_{3}\right)^{5} \mathrm{n}$ odd

Fig 4. $\left(\mathrm{P}_{10} \otimes \mathrm{~S}_{3}\right)^{5} \mathrm{n} \equiv 4(\bmod 6) \mathrm{n}$ even

Fig 5. $\left(\mathrm{P}_{6} \otimes \mathrm{~S}_{3}\right)^{15} \mathrm{n} \equiv 0(\bmod 6)$

Fig 6. $\left(\mathrm{P}_{8} \otimes \mathrm{~S}_{3}\right)^{5} \mathrm{n} \equiv 2(\bmod 6)$
Theorem $2.5 \mathrm{C}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}$ is prime
Proof:
The graph $\mathrm{C}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}$ has $\mathrm{n}+\mathrm{m}$ vertices and $n+m$ edges. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the cycle c_{n} and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$ be the vertices of the star and v_{1} be the central vertex.
$\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}\right\}$
$\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right\} \cup\left\{\mathrm{u}_{1} \mathrm{v}_{1}\right\} \cup$ $\left\{\mathrm{v}_{1} \mathrm{~V}_{\mathrm{i}} / 2 \leq \mathrm{i} \leq \mathrm{m}\right\}$

Case (i) n is even
Define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ by
$\mathrm{f}\left(\mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{1}\right)=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}-1,2 \leq \mathrm{i} \leq \mathrm{m}$
In this case also for every edge $u v \in E(G)$, it can be verified that $\operatorname{GCD}(f(u)$, $f(v))=1$.

Case (ii) $\mathrm{n} \neq 3,5$ and n is odd Define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\} \mathrm{b}$ y
$\mathrm{f}\left(\mathrm{u}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{v}_{2}\right)=\mathrm{n}+1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+2$ $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1,2 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}, 3 \leq \mathrm{i} \leq \mathrm{m}$

In this case also for every edge uve $\mathrm{E}(\mathrm{G})$, it can be verified that $\mathrm{GCD}(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$. Case (iii) $\mathrm{n}=3,5$
Define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$
$\mathrm{f}\left(\mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{v}_{2}\right)=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+2, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+2,3 \leq \mathrm{i} \leq \mathrm{m}$
In this case also for every edge $u v \in E(G)$, it can be verified that $\operatorname{GCD}(f(u)$, $f(v))=1$.

Therefore, $\mathrm{C}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}$ admits prime labeling and hence, $\mathrm{C}_{\mathrm{n}} \otimes \mathrm{S}_{\mathrm{m}}$ is a prime graph.

Example 2.6

Fig 8. case(ii) $\quad \mathrm{C}_{7} \otimes \mathrm{~S}_{4}$

References

1. J.A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18(2011), \#DS6.
2. S.M. Lee, I. Wui, J.yeh, On amalgamation of prime graphs, Bull. Malasian Math. Soc.

Fig 9. case(iii) $\quad \mathrm{C}_{3} \otimes \mathrm{~S}_{5}$
(Second Series), 11, 59-67 (1988).
3. C. Sekar, Studies in graph theory, Ph.D. thesis, Madurai kamaraj university (2002).
4. A.Tout, A.N. Dabboucy, K. Howalla, Prime labeling of graphs, Nat. Acad. Sci. Letters, 11, 365-368 (1982).

