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Abstract

This paper focuses on the study of a stochastic model for
predicting seroconversion time of HIV transmission under correlated
intercontact times.  In the estimation of expected time to seroconversion,
there is an important role for the interarrival times between successive
contacts and it has a significant influence.  We propose a stochastic
model assuming the intercontact times between successive contacts
are correlated random variables and the threshold distribution is SCBZ
property.  The expected time to seroconversion and its variance are
derived and numerical illustrations are provided.
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Notations :

Xi : a random variable denoting the increase
in the antigenic diversity arising due to
the HIV transmitted during the ith

contact X1, X2,…, Xk  are  continuous
i.i.d. random variables with p.d.f. g(.)
and c.d.f. G(.).

Y : a continuous random variable denoting
the threshold level having SCBZ property.

Ui : a continuous random variable denoting
the interarrival times between successive

contacts with p.d.f f(.) and c.d.f F(.).

gk(.) : the p.d.f of random variable 
 



k

1i
iX .

Fk(.) : the convolution of F(.).
T : a continuous random variable denoting

the time to seroconversion with p.d.f.
l(.) and c.d.f. L(.).

Vk(t) : the probability of exactly k contacts in
(o, t].

l*(s) : the Laplace transform of l(t).
f *(s): the Laplace transform of f(t).
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 : the correlation between Xi and Xj, i   j.

Zk :
 



k

1i
iU

Introduction

The incident and spread of Human
Immuno–deficiency Virus (HIV) infection and
consequent Acquired Immuno Deficiency
Syndrome (AIDS) as created pandemic
situation in the world all over.  The intensity of
occurrence and spread is highly pronounced
in many countries with the result that the
individual as well as the government have to
meet a great burden of financial stressed in
treating for the infection and its consequences.
The transmission of HIV is possible through
homo or heterosexual contacts, blood transfusion,
use of unsterile needles and mother to fetus.
The per contact transmission probability is
known as infectivity.  Jewell and Shiboski3 have
obtained the expression for hazard rate and
prevalence function using the available data
from the partner studies.

The time to seroconversion from the
point of infection depends upon what is known
as antigenic diversity which acts against the
immune ability of an individual. Every individual
has a threshold level of antigenic diversity.  If
the antigenic diversity due to acquiring more
and more of HIV infection due to homo or
heterosexual contacts exceeds the threshold
level, then the immune system of the human
body is completely suppressed which in turn
leads to seroconversion.  For a detailed study
of antigenic threshold and its estimation one
can refer to Nowak and May4 and Stilianakis
et al.6.

A stochastic model based on the
cumulative damage process is derived and
using this model it is possible to obtain the
expected time to seroconversion and its variance.
The antigenic diversity level which induces the
seroconversion is known as the random
antigenic diversity threshold. Every contact
induces and contributes to the antigenic diversity
which when crosses the threshold level will
result in the seroconversion of an individual.
Every contact is depicted as a shock and in
every contact there is some contribution to
antigenic diversity which in other words is the
damage to the immune capacity of an individual.
Cumulative damage process and shock model
are widely known in reliability theory.  A
detailed account of the same could be seen in
Esary et al.1. In the derivation of present model
the concepts of cumulative damage process
and shock model are taken as basis. In developing
such a model the basic assumption made was
that the intercontact timings between successive
contacts are i.i.d random variables.

In this paper a stochastic model assumes
that the intercontact timings between successive
contacts are correlated random variables and
the threshold distribution which follows SCBZ
property.  The  assumption  of  correlated
intercontact timings seems plausible by the fact
that any partner after every contact with an
index may have a physiological obsession and
fear of contracting the disease, which may
have an impact on intercontact times of contacts
such as prolongation of intercontact times.
Shock model with correlated intercontact times
has been studied by Sathiyamoorthi5. In
developing this model the result of Gurland2

has been used.  Using the same concept, time
to seroconversion and its variance are obtained
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in this paper.  In this study the theoretical results
are substantiated using numerical data
simulated.

Assumptions of the model :

 Sexual contact  is the only source of HIV
transmission.

 When an uninfected  individual has sexual
contact with a HIV infected partner, a
random number of HIV gets transmitted.

 An individual is exposed to a damage acting
on the immune system and damage is assumed
to be linear and cumulative.

 The intercontact timings between successive
contacts are not independent but are
correlated.

 The total damage caused when exceeds a
threshold level Y which itself a random
variable, the seroconversion occurs and a
person is recognized as seropositive.

 The process which generates the contacts,
the sequence of damages and threshold are
mutually independent.

Results

Let Y have the SCBZ property
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Numerical Illustrations
Table 1.

       l =1, =1, 1=1.5, 2=0.5, =0.5
E(T) V(T)

0.1 1.1200 1.3376
0.2 1.2400 1.7504
0.3 1.3600 2.2384
0.4 1.4800 2.8016
0.5 1.6000 3.4400
0.6 1.7200 4.1536
0.7 1.8400 4.9424
0.8 1.9600 5.8064
0.9 2.0800 6.7456

Fig. 1

The value of E(T) corresponding to
the variation in  with , , 1, 2 and  are
fixed.  happen to the parameter of the random
variable depicting the amount of antigenic
diversity contribution in the successive contact.
If   increase, the expected time to seroconver-
sion and variance of seroconversion are increases.
This is due to fact that g(.) is the distribution
of sX '

1  the magnitude of contribution to

antigenic diversity. Since   ,T 1E


  as 

increases there is a decrease in the contribution
of antigenic diversity.  Hence mean time to

seroconversion is increases, so also the value
of variance of seroconversion time.

Table 2.
1=1, =1, =0.1, 2=0.5, =0.5

E(T) V(T)
1.0 1.1500 1.4213
1.5 1.1200 1.3376
2.0 1.1000 1.2817
2.5 1.0857 1.2417
3.0 1.0750 1.2116
3.5 1.0667 1.1881
4.0 1.0600 1.1694
4.5 1.0545 1.1541
5.0 1.0500 1.1413

Fig. 2

It is observed from the Table 2 also
the graph as the value of 1 is the parameter
of the antigenic diversity threshold which is a
random variable distributed as exponential below
the truncation point τ increases the mean time
to seroconversion is decreases.  It is also quite
reasonable as regards the variation it could be
seen that as value of 1 increases, the variance
decreases.
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Table 3.
2=1, =1, =0.1, 1=1.5, =0.5

E(T) V(T)

0.1 1.4400 2.9504

0.2 1.2400 1.8164

0.3 1.1733 1.5318

0.4 1.1400 1.4069

0.5 1.1200 1.3376

0.6 1.1067 1.2937

0.7 1.0971 1.2636

0.8 1.0900 1.2415

0.9 1.0844 1.2248

Fig. 3

From the Table 3 we observe that for
fixed , , , 1 and  when 2 is allowed to
increase then mean time to seroconversion
decreases. The same tendency is also noted
on the variance of the seroconversion time of
the HIV transmission.
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Table 4.
=1, =0.1, 1=1.5, 2=0.5, =0.5

E(T) V(T)

1 1.1200 1.3376

2 1.1429 1.4039

3 1.1556 1.4399

4 1.1636 1.4625

5 1.1692 1.4779

6 1.1733 1.4891

7 1.1765 1.4975

8 1.1789 1.5044

9 1.1809 1.5098

10 1.1826 1.5142

Fig. 4

If the value of  which is the parameter
of the exponential distribution of the random
variable  denoting the truncation point increases,
then the expected time to seroconversion
increases as indicated in Table 4, so also is the
variance of T.
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Table 5.
=1, =0.1, 1=1.5, 2=0.5, =0.5

E(T) V(T)
1 1.1200 1.3376
2 0.5600 0.3344
3 0.3733 0.1486
4 0.2800 0.0836
5 0.2240 0.0535
6 0.1867 0.0371
7 0.1600 0.0273
8 0.1400 0.0209
9 0.1244 0.0165
10 0.1120 0.0134

Fig. 5

In Table 5 the value of expected time
to seroconversion corresponding to the variation
in  with , , 1, 2 and  are kept fixed. If 
which is the parameter of the distribution of
interarrival time which exponentially
distributed is given as  increases, the value

of 
µ
1

 decreases that means the interarrival

time between contacts become smaller and
so there is corresponding decrease in expected
time to seroconversion and also its variance.
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Table 6.
=1, =1, =0.1, 1=1.5, 2=0.5

V(T)
0.1 1.2700
0.2 1.2785
0.3 1.2925
0.4 1.3123
0.5 1.3376
0.6 1.3686
0.7 1.4051
0.8 1.4474
0.9 1.4953

Fig. 6

When  which is the constant correlation
between interarrival times between successive
contacts increases for fixed , , , 1 and 2,
the variance of the seroconversion increases.
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