On the maximal lattice of finite cyclic groups

SOURIAR SEBASTIAN¹, ALEXANDER MENDEZ² and DIVYAMARY DAISE.S³

(Acceptance Date 22nd December, 2012)

Abstract

In this paper we introduce the notion of a maximal lattice of groups. We also prove some theorems regarding maximal lattices and based on them develop a method to construct the maximal lattice of any finite cyclic group.

Key words : Cyclic groups of prime order, maximal lattice, L-fuzzy subgroups.

1. Introduction

The initial stages of the development of the subject of Partially ordered sets and lattices are found in the works of mathematicians like George Boole, Richard Dedekind, Charles Sanders Pierce and Earnest Schröder. Garrett Birkhoff² developed this subject into a full-fledged one in 1930's. Fuzzy set theory and fuzzy logic were developed by Lotfi A. Zadeh in 1965¹⁰. J.A. Goguen⁵ considered a complete and distributive lattice L for the membership set, instead of the closed interval [0,1] used by Zdeh; thus introducing the concept of L-fuzzy set. In 1971 Azriel Rosenfeld⁸ fuzzified the theory of groups. Just like fuzzy sets were generalized using lattices as membership sets, fuzzy groups also could be generalized.

Cyclic groups of prime power order are very important in the study of groups because of the fact that they are the building blocks of finite groups. In this paper, we investigate how to assign a *maximal lattice* L to a cyclic group of prime power order using its L-fuzzy subgroups and extend it to any finite cyclic group. We also develop a method to construct maximal lattices and illustrate it with some examples. Terms and notations in Lattice Theory used in this paper are as found in Bernard Kolman¹ and Devey B.A.³.

2. Basic concepts :

A relation \leq on a set A is called a *partial* order if \leq is reflexive, antisymmetric and transitive. The set A together with the partial order \leq is called a *partially ordered set* (or a *poset*) and is denoted as (A, \leq) or simply A. The elements a and b of a poset A are said to be *comparable* if if a \leq b or b \leq a. If every pair of elements in a poset A is comparable, we say that A is a *linearly* (or totally) ordered set and the partial order in this case is called a linear (total) order. We also say that such an A is a *chain*. For any set S, its power set P(S)together with set inclusin \subseteq is a poset. If $|S| \le 2$, it is not totally ordered. The set Z^+ of positive integers together with the usual order \leq is a totally ordered set(toset). An element $a \in A$ is called a maximal element of A if there is no element c in A such that a < c and an element element $b \in A$ is called a *minimal element* of A if there is no element *c* in A such that c < b. An element $a \in A$ is called a greatest element of A if $x \le a$ for all $x \in A$. An element $a \in A$ is called a *least element* of A if $a \le x$ for all x \in A. The greatest element of a poset, if it exists, is denoted by I and is called the unit element. The least element of a poset, if it exists, is denoted by O and is called the zero element.

Consider a poset A and a subset B of A. An element $a \in A$ is called an *upper bound* of B if $b \le a$ for all $b \in B$. An element $a \in A$ is called a *lower bound* of B if $a \le b$ for all b \in B. An element a \in A is called a *least uper* bound of B or supremum of B denoted as lub(B) or sup B or \vee B if a is an upper bound of B and $a \le a'$, whenever a' is an upper bound of B. An element $a \in A$ is called a *greatest* lower bound of B or infimum of B denoted as glb(B) (or inf B or \wedge B), if a is a lower bound of B a' \leq a, whenever a' is a lower bound of B. *lattice* is a poset (L, \leq) inwhich every subset {a, b} consisting of two elements has a least upper bound and a greatest lower bound. We denote lub ($\{a, b, \}$) and glb ($\{a, b\}$) by $a \lor b$ and $a \wedge b$ respectively and call them the *join* and *meet* respectively of *a* and *b*.

For any non-empty set $S,(P(S),\subseteq)$ is a poset. For any A, $B \in P(S)$, $A \lor B = A \cup B$ and

A \wedge B=A \cap B exist and so it is a lattice. Another example of a lattice is (Z⁺, \leq) where \leq is defined by $a\leq b$ iff a divides b. Here $a\vee b=$ lcm (a,b) and $a\wedge b=$ gcd(a,b). Now for any positive integer n, let D_n denote the set of all positive divisors of *n*. Then D_n together with the relation 'divisibility' is a lattice.

A non-empty subset S of a lattice L is called a *sublattice* of L if a, $b \in S \Rightarrow a \land b$, $a \lor b \in S$. If (A, \leq) and (B, \leq) are posets, then (AXB, \leq) is a poset, with partial order \leq defined by $(a,b) \leq (a',b')$ if $a \leq a'$ in A and $b \leq b'$ in B. The partial order \leq defined on the Cartesian product A X B is called the *product partial order*. If (L_1, \leq) and (L_2, \leq) are lattices, then (L_1, XL_2, \leq) is a lattice called *the product lattice of* L_1 and L_2 where the partial order \leq of L is the product partial order. Here $(a_1, b_1) \lor (a_2, b_2) =$ $(a_1 \lor a_2, \ b_1 \lor b_2)$ and $(a_1, b_1) \land (a_2, b_2) = (a_1 \land a_2, \ b_1 \lor b_2)$.

2.1. *Definition*¹ : A lattice L is called *distributive* if for any elements *a*, *b* and *c* in L, we have the following distributive properties:

1. $a \land (b \lor c) = (a \land b) \lor (a \land c)$ 2. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

2.2. $Definition^1$: A lattice L is said to be *complete* if every non-empty subset of it has glb and lub

If L_1 and L_2 are complete lattices, then L_1XL_2 is also a complete lattice with joins and meets being formed co-ordinate wise.

2.3. *Example* : $(P(S), \subseteq)$ is a complete and distributive lattice.

2.4. Definition⁴ : Given a universal set X, a *Fuzz Set* on X (*or a fuzzy subset of* X) is defined as a function A:X \rightarrow [0,1]. Its range is denoted as *Im*(*A*).

2.5. *Example*: Let X={a,b,c,d,e}. Define A: \rightarrow [0,1] by A(a)=0.1; A(b)=0.2; A(c)=0.3; A(d)=0.4; A(e)=0.5. Then A is fuzzy subset of X and Im(A)={0.1,0.2,0.3,0.4,0.5}.

2.6. *Definition*⁵ : If L is a lattice and X is a universal set, then an L-fuzzy set A on X (or an L-fuzzy subset A of X) is a function $A: X \rightarrow L$. We shall write $A \in L^X$ for A is an L-fuzzy set on X.

2.7. *Example* : Let $X=\{a,b,c,d\}$ and $L=D_6=\{1,2,3,6\}$ under the relation divisibility. Define A : X \rightarrow L by A(a)=1, A(b)=2, A(c)=3 and A(d)=6. Then A is an L-fuzzy set on X.

3. Fuzzy Groups :

3.1. Definition⁸ : A fuzzy subset A of a multiplicative group G is said to be a *fuzzy* subgroup of G or a *fuzzy* group on G if for every x, $y \in G$

(i) $A(xy) \ge \min \{A(x), A(y)\}$ and (ii) $A(x^{-1}) = A(x)$.

3.2. *Example* : Let $G=\{1,-1,-i\}$ under multiplication of complex numbers. Define A : $G\rightarrow[0,1]$ by A(1)=1, A(-1)=0.5, A(i)=A (-i)=0.25. Then A is a fuzzy subgroup of G.

3.3. *Definition*⁷. An L-fuzzy subset A of G is called an *L-fuzzy subgroup* of G (or *an L-fuzzy group on* G) if (i) $A(xy) \ge A(x) \land A(y)$, $\forall x, y \in G$, and

(ii) $A(x^{-1}) \ge A(x), \forall x \in G$

It may be recalled that for any positive integer $n, Z_n = \{0, 1, 2, ..., n-1\}$ is a group with respect to addition modulo n.

3.4. *Example*. Let G be the group $Z_6 = \{0,1,2,3,4,5\}$ under addition modulo 6. Take $L=D_6=\{1,2,3,6\}=\{0,a,b,1\}$ where 0 and 1 denote 1 and 6 respectively; and a and b are 2 or 3(interchangeable). Define A: $Z_6 \rightarrow D_6$ by A(0)=1, A(2)=A(4)=a, A(3)=b and A(1)=A (5)=0. Then A is an L-fuzzy group on Z_6 .

3.5. *Example*. Let V={e,a,b,c} be the *Klein-4 group*, whose composition table is as follows:

Table (i): Definition of binary operation * on V.

*	e	а	b	c
e	а	а	b	с
а	а	e	с	b
b	b	с	e	а
с	с	b	a	e

Let $L=D_6=\{0,x,y,1\}$. Define A:V \rightarrow D₆ by A(e)=1, A(a)=x,A(b)=y and A(c)=0. Then A is an L-fuzzy group on V.

3.6. Lemma⁷. Let G be a group and $A \in L^G$. Then A is an L-fuzzy group on G iff $A_a = \{x/x \in G, A(x) \ge a\}$ is a subgroup of G, $\forall a \in A \ (G) \cup \{b \in L/b \le A(e)\}$

3.7. *Notation*⁸. If G is a group and L is a lattice, then (GL) shall denote the collection of all L-fuzzy groups on G.

3.8. *Example*. Consider the group $\langle Z_{18,+18} \rangle$ and the lattice $D_{12} = \{1,2,3,4,6,12\}$. Define A:Z₁₈ \rightarrow D₁₂ by A:0 \mapsto 12, {3,15} \mapsto 2, {6,12} \mapsto 6, 9 \mapsto 4, {2,4,8,10,14,16} \mapsto 3, {1,5,7,11,13, 17} \mapsto 1. Then A is an L-Fuzzy subgroup of Z₁₈ as can be verified using the lemma 3.6.

4. L-fuzzy subgroups of finite cyclic groups:

4.1. Definition. Let $L = (\{a_1, a_2, \dots, a_n\}, \leq)$ be a lattice. We say that L is a *finite lattice* containing n points and write |L|=n.

4.2. *Example*. $D_6 = \{1,2,3,6\}$ is a lattice under divisibility. It is a finite lattice containing four points and so $|D_6|=4$.

4.3. *Definition*. Let G be a group, L be a finite lattice and A: $G \rightarrow L$ be an L-fuzzy group. A is said to *saturate* L if Im(A)=L. If there is an L-fuzzy group A on G which saturates L, then we say that *G* saturates L.

4.4. *Example*. Consider $G = \langle Z, + \rangle$ and L=({0,1/3,1/2,1}, \leq). Define A: G \rightarrow L by A(0)=1, A(x)=1/2 if x \in 4Z-{0}, A(x)=1/3 if x \in 2Z-4Z and A(x)=0 if x \in Z-2Z. Then A is an L-fuzzy group on G with Im (A) =L. Hence, A as well as G saturates L.

4.5. *Example* .Let $G = \langle Z_4, +_4 \rangle$ and $L = (\{0,1\}, \leq)$. Define A: $G \rightarrow L$ by A(0) = 1; A(x) = 0, if $x \neq 0$. Then A is an L-fuzzy group on G which saturates L and so G also saturates L.

4.6. *Example*. Let $G = \langle Z_4, +_4 \rangle$ and $L = (\{0, 1/2, 1\}, \leq)$. Define A: $G \rightarrow L$ by A(0)=1; A(x)=0, if $x \neq 0$. Here A is an L-fuzzy group on G with Im(A) \neq L. Hence A does not saturate L. But if we define B: $G \rightarrow L$ by B(0)=1; B(2)= 1/2 and B(1)=B(3)=0, then B is an L-fuzzy group on G which saturates L and hence G

also saturates L.

4.7. *Definition*. Let G be a group and L be a finite lattice. A sublattice L_1 of L is said to be a *maximal lattice* saturated by G if there is an A \in (G,L) which saturates L_1 and there is no B \in (G,L) which saturates a sublattice L_2 of L with $|L_2| > |L_1|$.

4.8. *Example*. Consider the sublattices $L_1=\{0,1\}$ and $L_2=\{0,1/2,1\}$ of $L=\{0,1/3,1/2,1\}$ and let $G=<Z_4,+_4>$. Define A: $G\rightarrow L$ by A(0)=1; A(x)=0, if $x\neq 0$. Also define B: $G\rightarrow L$ by B(0)=1; B(2)=1/2 and B(1)=B(3)=0. Then L_1 is not a maximal lattice of G, because there is L_2 with $|L_2|>|L_1|$ and B: $G\rightarrow L$ which saturates L_2 . It can be shown that L_2 is a maximal lattice for G.

We may recall that a group G is said to be of prime power order if $|G|=p^n$, for some prime number p and positive integer n.

4.9. *Theorem*⁹. Let G be a cyclic group of prime power order. Then the lattice of all subgroups of G is a chain \blacksquare

4.10. *Theorem*. Let G be a cyclic group of prime power order. Then a maximal lattice L_G for G is a chain isomorphic to the chain of all subgroups of G.

Proof: Suppose that the order of G is p^r, where p is a prime and r is a positive integer. Then G has r+1subgroups in all, which form a chain. Let $L_1: G_0= \{e\} \subset G_1 \subset G_2 \subset \dots \subset G_{r-1} \subset G_r=G$ be this chain of subgroups. Find a subchain $L_2: 0=a_0 < a_1 < a_2 < \dots < a_{r-1} < a_r=1$ of the chain L=[0,1] and define A:G→L by

$$\begin{array}{ll} A(e) = 1 \\ A(x) = a_{r-1}, & \text{if } x \ G_1 - \{e\} \\ &= a_{r-2,} & \text{if } x \ G_2 - \ G_1 \\ & &$$

Then the level set A_{a_i} is a subgroup of G for each a_i , $0 \le i \le r$. Hence, by lemma 3.6, A is an L-fuzzy subgroup of G. It is clear that G saturates L_2 . Now we shall show that L_2 is maximal. Suppose that L_2 is not maximal. Then we can find a subchain L_3 of L having more points (between 0 and 1) than L_2 has. Also there is some L-fuzzy subgroup B:G \rightarrow L which saturates L₃. Let b be a point in L₃ other than a_i , $0 \le i \le r$. Then, $a_{i-1} < b < a_i$ for some j. Since L₃ is saturated by B, there exists some subset $X \neq \emptyset$) of G such that $B(X) = \{b\}$. Now by lemma 3.6, the level subset B_b is a subgroup of G. Since, a_{i-1} <b<a_i, B_b is different from all the subgroups B_{a_i} , $0 \le i \le r$. Thus corresponding to each such b we get one subgroup in addition to the subgroups determined by a_i . This produces more than r+1subgroups for G, which is impossible since G has precisely r+1 subgroups. This contradiction shows that L₂ is maximal. Thus the maximal lattice $L_G = L_2$. It is easily seen that L_{-2} is isomorphic to L_1

4.11. *Corollary*. A maximal chain for a cyclic group of prime power order is unique up to isomorphism.

Proof: Let G be a group of prime power order and L_1 and L_2 be two maximal chains

for G. Then L_1 and L_2 are isomorphic to the chain of subgroups of G and as such they are isomorphic to each other \blacksquare

4.12. *Remark*. In view of the above corollary, we can talk of *the maximum chain* for a cyclic group of prime power order.

4.13. *Corollary*. The maximum chain for a group of prime order is $\{0,1\}$.

Proof: Let G be a group of prime order p. Then it is cyclic of order $p^1 = p$. Hence by theorem 4.10 it has two points in its chain of subgroups and so is the maximum chain. Hence the result

4.14. *Corollary*. For any prime number p, the maximum chain for Z_p is $\{0,1\}$.

4.15. Corollary. If p is a prime number and n is any positive integer then the maximum chain for is $0=a_0<a_1...<a_n=1$

 $\begin{array}{l} \mbox{4.16. Example. } Z_8 \mbox{ is a prime powered} \\ \mbox{group since } |Z_8|{=}8{=}2^3. \mbox{ Hence, by corollary} \\ \mbox{4.15.,the maximum chain of } Z_8 \mbox{ is } 0{=}a_0{<}a_1 \\ {<}a_2{<}a_3{=}1. \end{array}$

It is well-known that every finite cyclic group of order n is isomorphic to Z_n . So, henceforth we represent cyclic groups of order n by Z_n .

4.17. *Proposition*⁶. The group $Z_m X$ Z_n is isomorphic to Z_{mn} if and only if m and n are relatively prime \blacksquare

4.18. Proposition⁶. The group
$$\prod_{i=1}^{n} Z_{m_i}$$

is cyclic and isomorphic to if and only if the number m_i , for i=1,2...n are pairwise relatively prime

4.19. Proposition⁶. Suppose $n = p_1^{n_1} p_2^{n_2} \dots p_r^{n_r}$, where p_i 's are distinct primes. Then Z_n is isomorphic to $Z_{p_1^{n_1}} X$ $Z_{p_2^{n_2}} \dots X Z_{p_r^{n_r}}$

4.20. *Theorem.* Suppose $n = p_1^{n_1} p_2^{n_2}$ $p_r^{n_r}$, where p_i 's are distinct primes. Then the maximum lattice for $Z_n = Z_{p_1^{n_1}} X Z_{p_2^{n_2}}$ $X Z_{p_r^{n_r}}$ is the product lattice of the maximum chains for the factors $Z_{p_i^{n_i}}$.

Proof: By theorem 4.10, each $Z_{p_i}^{n_i}$ has a chain of (n_i+1) points as its maximum lattice. Let L be the product of these chains under partial order product. Then L has $\prod_{i=1}^{r} (n_i + 1)$ points. Each $Z_{p_i}n_i$ is a cyclic group of prime power order. It has (n_i+1) subgroups. Hence there are $\prod_{i=1}^{r} (n_i + 1)$ subgroups of \mathbb{Z}_n altogether. Corresponding to each subgroup we can find a point on the lattice L. This is possible because there is a 1-1 correspondence between subgroups of $Z_{p_i}n_i$ and the points of its chain. We can define an L-fuzzy set A: $Z_n \rightarrow L$ in such a manner that the level set A_a for each $a \in L$ is a subgroup of Z_n . Then A is an L-fuzzy subgroup of Z_n . It is obvious that A saturates L. Since each chain is maximum for the corresponding cyclic group, L is maximum for the product group

4.21. Example.
$$Z_6 \cong Z_2 \times Z_3$$
. The

maximum chain for both Z_2 and Z_3 is $D_2=\{0,1\}$. Take $Z_6=\{0,1\} X \{0,1,2\}=\{00,01,02,10,11,12\}$. Its composition table is given below in table (ii): Addition on the first digit is modulo 2 and that on second is modulo 3.

Table (ii): Composition table for Z₂XZ₃.

+	00	01	02	10	11	12
00	00	01	02	10	11	12
01	01	02	00	11	12	10
02	02	00	01	12	10	11
10	10	11	12	00	01	02
11	11	12	10	01	02	00
12	12	10	11	02	00	01

Its proper subgroups are $Z_2 = \{00, 10\}$ and $Z_3 = \{00, 01, 02\}$. Its subgroup lattice is given in figure(i):

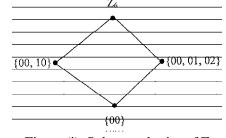


Figure (i): Subgroup lattice of Z_6 Take L=D₂XD₂

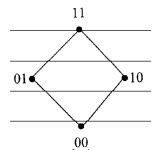


Figure (ii): The product lattice $L=D_2XD_2$

Define A:Z₆ L by A(00) = 11, A(10) = 01, A(01) = A(02) = 10, A(11) = A(12) = 00. This is an L-Fuzzy group and D₂ x D₂ is the maximum lattice for Z₂ x Z₃ =Z₆.

4.22. Example. $Z_{30}=Z_2XZ_3XZ_5=\{0,1\}$ X $\{0,1,2\}X\{0,1,2,3,4\}=\{000,001,\ldots,123,124\}$. It has eight subgroups having 1 element, 2elements, 3elements, 5 elements, 6 elements, 10 elements, 15 elements and 30elements respectively. They are

- $e = \{000\},\$
- $\mathbf{B} = \{000, 100\},\$
- $C = \{000, 010, 020\},\$
- $D = \{000, 001, 002, 003, 004\},\$
- $\mathbf{E} = \{000, 010, 020, 100, 110, 120\},\$
- $F = \{000, 001, 002, 003, 004, 100, 101, 102, 103, 104\},\$
- $G = \{000, 010, 020, 001, 011, 021, 002, 012, 022, 003, \\013, 023, 004, 014, 024\} \text{ and }$
- $Z_{30} = \{000, 001, 002, 003, 004, 010, 011, 012, 013, \\ 014, 020, 021, 022, 023, 024, 100, 101, 102, \\ 103, 104, 110111, 112, 113, 114, 120, 121, 122, \\ 123, 124\}$

The subgroup lattice can be found to be D_{30} .

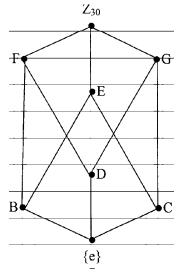


Figure (iii): Subgroup lattice for Z_{30}

Take
$$L= D_{30}=D_2XD_2XD_2=\{0,1\}X\{0,1\}X\{0,1\}$$
:

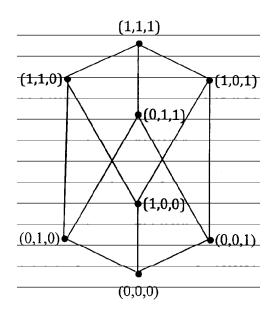


Figure (iv):Product lattice D₂XD₂XD₂

The L-fuzzy subgroup A: Z_6L is defined as follows: A(x)=(1,1,1) if $x \in \{e\}=\{000\}$ A(x)=(1,1,0) if $x \in B-\{e\}=\{100\}$ A(x)=(1,0,1) if $x \in C-\{e\}=\{010,020\}$ A(x)=(0,1,1) if $x \in D-\{e\}=\{001,002,003,004\}$ A(x)=(1,0,0) if $x \in E-(BC)=\{110,120\}$ A(x)=(0,1,0) if $x \in F-(BD)=\{101,102,103,104\}$ A(x)=(0,1,0) if $x \in G-(CD)=\{011,021,012,022,013, 023,014,024\}$ A(x)=(0,0,0) if $x \in \{111,112,113,114,121,122,123,124\}$

This shows that the maximum lattice for $Z_{30}=D_{30}$.

5. Concluding remarks

Since any finite cyclic group is isomorphic to Z_n for some n and any n can be factored in the form $n = p_1^{n_1} p_2^{n_2} \dots p_r^{n_r}$, where p_1, p_2, \dots, p_r are distinct prime numbers, the technique described above can be applied to find the maximum lattice of any finite cyclic group. The method can also be extended to infinite cyclic groups and this is the subject matter of another paper to be communicated soon.

References

- 1. Bernard Kolman, Robert C. Busby and Sharon Cutler Ross, Discrete Mathematical Structures, PHI Learning, New Delhi (2009).
- Birkhoff G., Lattice Theory, 3rd Edition, Coll. Publ. XXV, American Math. Soc., Providence, R. I., (1967).
- 3. Davey B.A. and Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge (1990).
- 4. George J. Klir, and Bo Yuan, Fuzzy Sets and Fuzzy Logic, PHI Learning, New

Delhi, (2009).

- Goguen J.A., L-Fuzzy Sets, Journal of Mathematical Analysis and Applications 18, 145-174 (1967).
- 6. John B. Fraleigh, AFirst Course in Abstract Algebra, Third Edition, Narosa Publishing House, New Delhi (1986).
- John N. Mordeson and D.S.Malik, Fuzzy Commutative Algebra, World Scientific, Singapore (1998).
- 8. Rosenfeld A., Fuzzy groups, J. Math. Anal. & Appl. 35, 512-517 (1971).
- 9. Vijay K. Khanna, Lattices and Boolean Algebras, Vikas Publishing House, New Delhi (2005).
- 10. Zadeh L.A., Fuzzy Sets, Information Control, 8, 338-353 (1965).