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Abstract

In this paper we introduce the notion of a maximal lattice of
groups. We also prove some theorems regarding maximal lattices and
based on them develop a method to construct the maximal lattice of any
finite cyclic group.
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1. Introduction

The initial stages of the development
of the subject of Partially ordered sets and
lattices are found in the works of mathema-
ticians like George Boole, Richard Dedekind,
Charles Sanders Pierce and Earnest Schröder.
Garrett Birkhoff 2 developed this subject into
a full-fledged one in 1930's. Fuzzy set theory
and fuzzy logic were developed by Lotfi A.
Zadeh in 196510. J.A. Goguen5 considered a
complete and distributive lattice L for the
membership set, instead of the closed interval
[0,1] used by Zdeh; thus introducing the
concept of L-fuzzy set. In 1971 Azriel Rosenfeld8

fuzzified the theory of groups. Just like fuzzy sets
were generalized using lattices as membership
sets, fuzzy groups also could be generalized.

Cyclic groups of prime power order
are very important in the study of groups

because of the fact that they are the building
blocks of finite groups. In this paper, we
investigate how to assign a maximal lattice L
to a cyclic group of prime power order using
its L-fuzzy subgroups and extend it to any finite
cyclic group. We also develop a method to
construct maximal lattices and illustrate it with
some examples. Terms and notations in Lattice
Theory used in this paper are as found in
Bernard Kolman1 and Devey B.A.3.

2. Basic concepts :

A relation  on a set A is called a partial
order if  is reflexive, antisymmetric and
transitive. The set A together with the partial
order  is called a partially ordered set (or a
poset) and is denoted as (A,  ) or simply A.
The elements a and b of a poset A are said to
be comparable if if a  b or b a. If every
pair of elements in a poset A is comparable,
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we say that A is a linearly (or totally) ordered
set and the partial order in this case is called a
linear (total) order. We also say that such an
A is a chain. For any set S, its power set P(S)
together with set inclusin  is a poset. If |S|2,
it is not totally ordered. The set Z+ of positive
integers together with the usual order  is a
totally ordered set(toset). An element a  A
is called a maximal element of A if there is no
element c in A such that a < c and an element
element b  A is called a minimal element of
A if there is no element c in A such that c < b.
An element a  A is called a greatest element
of A if x  a for all x  A. An element a  A
is called a least element of A if a  x for all x
 A. The greatest element of a poset, if it exists,
is denoted by I and is called the unit element.
The least element of a poset, if it exists, is
denoted by O and is called the zero element.

Consider a poset A and a subset B of
A. An element a  A is called an upper bound
of B if b  a for all b  B.  An element a  A
is called a lower bound of B if a  b for all b
 B. An element a  A is called a least uper
bound of B or supremum of B denoted as
lub(B) or sup B or  B if a is an upper bound
of B and aa', whenever a' is an upper bound
of B. An element aA is called a greatest
lower bound of B or infimum of B denoted
as glb(B) (or inf B or  B), if a is a lower bound
of B a'a, whenever a' is a lower bound of B.
lattice is a poset (L,) inwhich every subset
{a, b} consisting of two elements has a least
upper bound and a greatest lower bound. We
denote lub ({a,b,}) and glb ({a,b}) by a  b
and a  b respectively and call them the join
and meet respectively of a and b.

For any non-empty set S,(P(S),) is a
poset. For any A, B  P(S), AB=AB and

AB=AB exist and so it is a lattice. Another
example of a lattice is (Z+,) where  is
defined by ab iff a divides b. Here ab=lcm
(a,b) and ab=gcd(a,b). Now for any positive
integer n, let Dn denote the set of all positive
divisors of n. Then Dn together with the relation
'divisibility' is a lattice.

A non-empty subset S of a lattice L is
called a sublattice of L if a, b  S  ab,
abS. If (A,) and (B,) are posets, then
(AXB,) is a poset, with partial order defined
by (a,b)  (a',b') if aa' in A and bb' in B.
The partial order defined on the Cartesian
product A X B is called the product partial
order. If (L1,) and (L2,) are lattices, then
(L1,XL2,) is a lattice called the product lattice
of L1 and L2 where the partial order  of L is
the product partial order. Here (a1,b1) (a2,b2)=
(a1a2, b1b2) and (a1,b1) (a2,b2)=(a1a2,
b1b2).

2.1. Definition1 : A lattice L is called
distributive if for any elements a, b and c in
L, we have the following distributive
properties:
1. a (bc)=(ab)  (ac)
2. a (bc)=(ab)  (ac)

2.2. Definition1 : A lattice L is said to
be complete if every non-empty subset of it
has glb and lub

If L1 and L2 are complete lattices, then
L1XL2 is also a complete lattice with joins and
meets being formed co-ordinate wise.

2.3. Example : (P(S),) is a complete
and distributive lattice.
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2.4. Definition4 : Given a universal
set X, a Fuzz Set on X (or a fuzzy subset of
X) is defined as a function A:X[0,1]. Its
range is denoted as Im(A).

2.5. Example : Let X={a,b,c,d,e}. Define
A:[0,1] by A(a)=0.1; A(b)=0.2; A(c)=0.3;
A(d)=0.4; A(e)=0.5. Then A is fuzzy subset
of X and Im(A)={0.1,0.2,0.3,0.4,0.5}.

2.6. Definition5 : If L is a lattice and
X is a universal set, then an L-fuzzy set A on
X (or an L-fuzzy subset A of X) is a function
A : XL. We shall write ALX for A is an L-
fuzzy set on X.

2.7. Example : Let X={a,b,c,d} and
L=D6={1,2,3,6} under the relation divisibility.
Define A : XL by A(a)=1, A(b)=2, A(c)=3
and A(d)=6. Then A is an L-fuzzy set on X.

3. Fuzzy Groups :

3.1. Definition8 : A fuzzy subset A of
a multiplicative group G is said to be a fuzzy
subgroup of G or a fuzzy group on G if for
every x, yG

(i) A (xy)min {A(x), A(y)} and (ii) A(x-1) =A(x).

3.2. Example : Let G={1,-1,-i} under
multiplication of complex numbers. Define A :
G[0,1] by A(1)=1, A(-1)=0.5, A(i)=A
(-i)=0.25. Then A is a fuzzy subgroup of G.

3.3. Definition7. An L-fuzzy subset
A of G is called an L-fuzzy subgroup of G (or
an L-fuzzy group on G) if
(i)  A(xy)A(x)A(y), x,yG,and
(ii)  A(x-1)  A(x), xG

It may be recalled that for any positive integer
n, Zn={0,1,2,…,n-1} is a group with respect to
addition modulo n.

3.4. Example. Let G be the group
Z6 ={0,1,2,3,4,5} under addition modulo 6.Take
L=D6={1,2,3,6}={0,a,b,1} where 0 and 1
denote 1 and 6 respectively; and a and b are 2
or 3(interchangeable). Define A: Z6   D6 by
A(0)=1, A(2)=A(4)=a, A(3)=b and A(1)=A
(5)=0. Then A is an L-fuzzy group on Z6.

3.5. Example. Let V={e,a,b,c} be the
Klein-4 group, whose composition table is as
follows:

Table (i): Definition of binary operation * on V.

* e a b c
e a a b c
a a e c b
b b c e a
c c b a e

Let L=D6= {0,x,y,1}. Define A:V
D6 by A(e)=1, A(a)=x,A(b)=y and A(c)=0.
Then A is an L-fuzzy group on V.

3.6. Lemma7. Let G be a group and
ALG. Then A is an L-fuzzy group on G iff
Aa={x/xG, A(x)a} is a subgroup of G, a
A (G){bL/bA(e)} ■ 

3.7. Notation8. If G is a group and L
is a lattice, then (G,L) shall denote the collection
of all L-fuzzy groups on G.

      3.8. Example. Consider the group <Z18,+18>
and the lattice D12 ={1,2,3,4,6,12}. Define



A:Z18D12 by A:0 12, {3,15} 2, {6,12}
6, 9 4, {2,4,8,10,14,16} 3, {1,5,7,11,13,
17} 1. Then A is an L-Fuzzy subgroup of
Z18 as can be verified using the lemma 3.6.

4. L-fuzzy subgroups of finite cyclic groups:

     4.1. Definition. Let L= ({a1,a2,…….an},)
be a lattice. We say that L is a finite lattice
containing n points and write |L|=n.

4.2. Example. D6= {1,2,3,6} is a lattice
under divisibility. It is a finite lattice containing
four points and so |D6|=4.

4.3. Definition. Let G be a group, L
be a finite lattice and A: GL be an L-fuzzy
group. A is said to saturate L if  Im(A)=L . If
there is an L-fuzzy group A on G which
saturates L, then we say that G saturates L.

4.4. Example. Consider G = <Z,+>
and L=({0,1/3,1/2,1},). Define A: GL by
A(0)=1, A(x)=1/2 if x 4Z-{0}, A(x)=1/3 if
x 2Z-4Z and A(x)=0 if x Z-2Z. Then A is
an L-fuzzy group on G with Im (A) =L. Hence,
A as well as G saturates L.

4.5. Example .Let G=<Z4,+4> and
L=({0,1},). Define A: GL by A(0)=1;
A(x)=0, if x0. Then A is an L-fuzzy group on
G which saturates L and so G also saturates L.

4.6. Example.  Let G=<Z4,+4> and
L=({0,1/2,1},). Define  A: GL by A(0)=1;
A(x)=0, if x0. Here A is an L-fuzzy group on
G with Im(A)L. Hence A does not saturate
L. But if we define B: GL by B(0)=1; B(2)=
1/2 and B(1)=B(3)=0, then B is an L-fuzzy
group on G which saturates L and hence G

also saturates L.

4.7.  Definition. Let G be a group
and L be a finite lattice. A sublattice L1  of L is
said to be a maximal lattice saturated by G if
there is an A(G,L) which saturates L1 and
there is no B(G,L) which saturates a sublattice
L2 of L with |L2|>|L1|.

4.8. Example. Consider the sublattices
L1={0,1} and L2={0,1/2,1} of L ={0,1/3,1/2,1}
and let G=<Z4,+4>. Define  A: GL by A(0)=1;
A(x)=0, if x0. Also define B: GL by B(0)=1;
B(2)=1/2 and B(1)=B(3)=0. Then L1 is not a
maximal lattice of G, because there is L2 with
|L2|>|L1| and B: GL which saturates L2. It can
be shown that L2 is a maximal lattice for G.

We may recall that a group G is said
to be of prime power order if |G|= pn, for some
prime number p and positive integer n.

4.9. Theorem9. Let G be a  cyclic
group of prime power order. Then the lattice
of all subgroups of G is a chain  ■ 

4.10. Theorem. Let G be a cyclic group
of prime power order. Then a maximal lattice
LG for G is a chain  isomorphic to the chain of
all subgroups of G.

Proof: Suppose that the order of G
is pr, where p is a prime and r is a positive
integer. Then G has r+1subgroups in all, which
form a chain. Let L1: G0= {e} G1G2
………Gr-1Gr=G be this chain of subgroups.
Find a subchain L2 : 0=a0< a1<a2<……….<ar-1<
ar=1 of the chain L=[0,1] and define A:GL by
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A(e)=1
A(x) = ar-1,  if  x G1-{e}
        = ar-2,  if  x G2- G1

        ………………………..
        ………………………..
        = a1, if  x Gr-1- Gr-2    and

         = 0, if  x G­  - Gr-1.

Then the level set Aai is a subgroup of G for
each ai , 0ir. Hence, by lemma 3.6, A is an
L-fuzzy subgroup of G. It is clear that G saturates
L2. Now we shall show that L2 is maximal.
Suppose that L2 is not maximal. Then we can
find a subchain L3 of L having more points
(between 0 and 1) than L2 has. Also there is
some L-fuzzy subgroup B:GL which saturates
L3. Let b be a point in L3 other than ai , 0ir.
Then, aj-1 <b<aj for some j. Since L3 is saturated
by B, there exists some subset X  of G
such that  B(X)={b}. Now by lemma 3.6, the
level subset Bb is a subgroup of G. Since, aj-1

<b<aj , Bb is different from all the subgroups
Bai, 0ir. Thus corresponding to each such b
we get one subgroup in addition to the subgroups
determined by ai. This produces more than r+1
subgroups for G, which is impossible since G
has precisely r+1 subgroups. This contradiction
shows that L2 is maximal. Thus the maximal
lattice LG = L2.It  is    easily  seen  that  L­2 is
isomorphic to L1  ■ 

4.11. Corollary. A maximal chain for
a cyclic group of prime power order is unique
up to isomorphism.

      Proof: Let G be a group of prime power
order and L1 and L2 be two maximal chains

for G. Then L1 and L2 are isomorphic to the
chain of subgroups of G and as such they are
isomorphic to each other ■ 

4.12. Remark. In view of the above
corollary, we can talk of the maximum chain
for a cyclic group of prime power order.

4.13. Corollary. The maximum chain
for a group of prime order is {0,1}.

Proof: Let G be a group of prime
order p. Then it is cyclic of order p1= p. Hence
by theorem 4.10 it has two points in its chain
of subgroups and so is the maximum chain.
Hence the result  ■ 

4.14. Corollary. For any prime number
p, the maximum chain for Zp  is {0,1}.

4.15. Corollary. If p is a prime number
and n is any positive integer then the maximum
chain for  is 0=a0<a1……..<an=1  ■ 

4.16. Example. Z8 is a prime powered
group since |Z8|=8=23. Hence, by corollary
4.15.,the maximum chain of Z8 is 0=a0<a1

<a2<a3=1.

It is well-known that every finite cyclic
group of order n is isomorphic to Zn. So,
henceforth we represent cyclic groups of order
n by Zn.

4.17. Proposition6. The group Zm X
Zn is isomorphic to Zmn if and only if m and n
are relatively prime  ■ 

     4.18. Proposition6.  The group Zmii=
n

1
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is cyclic and isomorphic to if and only if the
number mi , for i=1,2…n are pairwise relatively
prime  ■ 

  4.19.   Proposition6.  Suppose
n= ,  where pi

’s are distinct

primes. Then Zn  is isomorphic to 

■ 

4.20. Theorem. Suppose n =
,  where pi

’s are distinct primes. Then

the maximum lattice for Zn = 

 is the product lattice of the

maximum chains for the factors .

Proof: By theorem 4.10, each 
has a chain of (ni+1) points as its maximum
lattice. Let L be the product of these chains under
partial order product. Then L has ( )nii=

r  11

points. Each  is a cyclic group of prime
power order. It has (ni+1) subgroups. Hence

there are ( )nii=
r  11  subgroups of Zn altogether..

Corresponding to each subgroup we can find
a point  on the lattice L. This is possible because
there is a 1-1 correspondence between subgroups
of  and the points of its chain. We can
define an L-fuzzy set A : ZnL in such a manner
that the level set Aa for each aL is a subgroup
of Zn. Then A is an L-fuzzy subgroup of Zn. It
is obvious that A saturates L. Since each chain
is maximum for the corresponding cyclic
group, L is maximum for the product group  ■ 

4.21. Example. Z6  Z2 X Z3. The

maximum chain for both Z2 and Z3 is D2={0,1}.
Take Z6={0,1} X {0,1,2}={00,01,02,10,11,12}.
Its composition table is given below in table
(ii): Addition on the first digit is modulo 2 and
that on second is modulo 3.

Table (ii): Composition table for Z2XZ3.

+ 00 01 02 10 11 12
00 00 01 02 10 11 12
01 01 02 00 11 12 10
02 02 00 01 12 10 11
10 10 11 12 00 01 02
11 11 12 10 01 02 00
12 12 10 11 02 00 01

Its  proper subgroups are Z2={00,10} and
Z3={00,01,02}. Its subgroup lattice is given in
figure(i):

Figure (i): Subgroup lattice of Z6

Take L=D2XD2

Figure (ii):The product lattice  L=D2XD2
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Define A:Z6 L by A(00) = 11, A(10) = 01, A(01)
= A(02) = 10, A(11) = A(12) = 00. This is an
L-Fuzzy group and D2 x D2 is the maximum
lattice for Z2 x Z3 =Z6.

         4.22. Example. Z30=Z2XZ3XZ5={0,1}
X{0,1,2}X{0,1,2,3,4}={000,001,…….., 123, 124}.
It has eight subgroups having 1 element,
2elements, 3elements, 5 elements, 6 elements,
10 elements, 15 elements and 30elements
respectively.They are
{e}= {000},
B = {000, 100},
C = {000, 010, 020},
D = {000, 001, 002, 003, 004},
E = {000, 010, 020, 100, 110, 120},
F = {000, 001, 002, 003, 004, 100, 101, 102,  103, 104},
G = {000, 010, 020, 001, 011,  021,  002,  012,  022, 003,

013, 023, 004, 014, 024} and
Z30= {000, 001, 002, 003, 004, 010, 011, 012, 013,

014, 020, 021, 022, 023, 024, 100, 101, 102,
 103, 104, 110111, 112, 113, 114, 120, 121, 122,
123, 124}

The subgroup lattice can be found to be D30.

Figure (iii): Subgroup lattice for Z30

Take L= D30=D2XD2XD2={0,1}X{0,1}X{0,1}:

Figure (iv):Product lattice D2XD2XD2

The L-fuzzy subgroup A: Z6L is defined as follows:
A(x)= (1,1,1)   if x {e}={000}
A(x)= (1,1,0)   if x B-{e}={100}
A(x)= (1,0,1)   if x C-{e}={010,020}
A(x)= (0,1,1)   if x D-{e}={001,002,003,004}
A(x)= (1,0,0)   if x E-(BC)={110,120}
A(x)= (0,1,0) if x F-(BD)={101,102,103,104}
A(x)= (0,1,0)   if x G-(CD)={011,021,012, 022, 013,
                          023,014,024}
A(x)=(0,0,0) if x{  111,112,113,114,121,122,123,124}
This shows that the maximum lattice for Z30=D30.

5. Concluding remarks

        Since any finite cyclic group is isomorphic
to Zn for some n and any n can be factored in the

form n=  ,where p1,p2,.....pr
are distinct prime numbers, the technique
described above can be applied to find the
maximum lattice of any finite cyclic group. The

On the maximal lattice of finite cyclic groups. 53



method can also be extended to infinite cyclic
groups and this is the subject matter of another
paper to be communicated soon.
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