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Abstract

In this paper we present some identities involving common
factors of Negafibonacci and Lucas numbers. Binet’s formula of
Negafibonacci will employ to obtain the identities.
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1.Introduction

The Fibonacci and Lucas numbers
appear in numerous mathematical problems.
In Mathematical terms, the sequence of the
Fibonacci numbers is defined by the recurrence
relation’?,

F=F_ ,+F,
with F, =0, F, =1  where n>1 (1.1)
Fnis called v Fibonacci number
Binet’s formula is
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where o = and f=———— (1.3)
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which gives ¢ + =1 and . =-1
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The sequence can also be extended
to negative index n using the re-arranged
recurrence relation -

anz = I:n - I:n—l (14)

Binet’s formula of “Negafibonacci” number
is given by

F, =0 {—aa :g }

The Lucas sequence is defined® as

(1.5)
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L., =L, +L, ,, wheren>1withL¢=2, L;=1

(1.5)
Binet’s formula for the Lucas sequence is

n-1?

n:(1+\/§)2(1 \/_)
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where a =
which gives o + =1 and a.ﬂ =—

2. ldentities for Common Factors of
Negafibonacci and Lucas Number :

Theorem 2.1 Fgn+1=F_4n.1) Lan+1,
where n>1

Proof : F_(4y4).L4n =
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a4n—1_ﬂ4n—1

Proof :F ,, L, =(-1)"| =——E5—
—(4n-1)"4 ( ) { Ot—,B

[a4n+1+ﬂ4n+l] {By (1.5)}

_ aSn_ﬂSn . a4n—1.ﬂ4n+1_ﬂ4n—1.a4n+l
a-p a-p

_ (an _ﬁSn . a4n—1.ﬁ4n+1 _ﬁ4n—1.a4n+1
a-p a-p

=Fy, +(-1)"(a+ B) {By(1.2)and(1.3)}
=k, +1

Theorem 2.2 Ky, +1=F  ,.L,, n=1

= I:8n+1 + L(_ 1)4” [OC - ﬂ]
(04

= F8n+1 +1

_ 8n+1 ﬁ8n+l
a-p

Theorem 2.3 K., +1= F_(4n+2).L4n , Where n>1

4n+2
(04

Proof: F—(4n+2)'L4n = (_1)4n+3{_

a-p

4n 1
—a }[a““ + ] (By (L5)
o —
1 4n—1 4n _ 4n+1 4n
—latp - pat]
{By (1.2)and (1.3)}
4n+2
—} ot + "] By (L.5)
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=(_1)4n+3{a8n+2 _g8n+2}+ l’B o2 g _a4n.ﬁ4n+2]
o — o —

1 4n 2 2
={F8n+z+a (-1) [a -p ]} {By (1.2) and (1.3)}

= F,

8n+3

+1

By the same way we have the following Result

Lemma 2.5 F_, .L, =-F,,
2n _@R2n
Proof : Fonlan= (—1)2“+1Fuk By (1.5)
a-B
_[la"—p")
a—
= -Fun

Lemma 26 —(F,,-1)=F, .L,. wheren>1

Proof: F, .L,..,= (—1)4””{M}[a4”” + ,84””] By (1.5)
a-p
_ a’ - IBSH 1 an pantl  pansd _ 4n
_K o J+a+’3a B o
= Py + (_i) 5 (B-a) {By (L.2) and (1.3)}

= _[F8n+1 _1] =—-F.L L
From Lemma 5 and Lemma 6, we have the following result,

Corollary 2.7 —(F8n+1 —1): -F,,.L L
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Lemma 2.8 —(F8n+3 —1): —F_(4n+2)-Lans1, Where n>1
Theorem2.9 L, ., +1=-L,.L,.,, wherenx>1
Theorem2.10 L, ,-1=1L, ,.L,,., wheren>1
Theorem2.11 L, ,+1=5L, ,.F, 1 .F., n=0
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