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Abstract

A Linear method is constructed for numerical solution of two
dimensional non-linear Burgers equation. The scheme is derived from
Crank-Nicolson finite difference scheme for linear terms and averaging
for nonlinear terms. The method is shown to be consistent and second
order accurate in time and space. The numerical solutions are obtained
for two test problems at different time t and Reynolds number Re. The
numerical solutions are compared with exact solution and other existing
methods. Though the method is linear numerical solutions are compatible
with ADM and Crank-Nicolson method.
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1. Introduction

Burgers  equation  is  an  important
partial differential equation in fluid dynamics.
It has many applications in a variety of physical
and engineering areas such as modeling of
dynamics, heat conduction, acoustic waves
,investigating the shallow water waves1,2, in
examining the chemical reaction ,diffusion
model of Brusselator3, model of turbulence4,5

and approximate theory of flow through a
shock wave travelling in viscous fluid6. In 1995

S.E. Esipov derived coupled Burgers equation
as a simple model of polydispersive sedimentation
or evaluation of scaled volume concentrations
of two kinds of particle in fluid suspensions7.
The two dimensional Burges equation is same
as the incompressible Navier Stokes equations
without the pressure gradient terms. This
constitutes an appropriate model for developing
computational algorithms for solving the
incompressible Navier Stokes equations.

In 1983 Fletcher J.D developed a
procedure for generating exact solutions for
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two dimensional Burgers equation8. In 1983
Fletcher C.J obtained numerical solutions of
one and two dimensional Burgers equation  by
finite difference method and numerical solutions
are compared with exact solutions. Finite
difference method is proved to be suitable for
testing computational algorithms for solving
two dimensional Burgers equation9. In 1992
F.W. Wubs, E.D.de Goede developed an
explicit –implicit method for a class of time
dependent partial differential equations10. J.H.
He et al.11, M.A. Abdau, A.A. Soliman12 used
variational iteration method to solve two
dimensional Burgers equation. In 2000
Solimann13 used the similarity reductions for
the partial differential equations to develop  a
scheme for two dimensional Burgers equaton.
In 2001 D.Kaya gave explicit solution for coupled
viscous Burgers equation by decomposition
method14. In 2004 S.F. Radwan used high order
accurate schemes for solving the unsteady two
dimensional Burgers equation. They also
discussed the fourth order accurate two point
compact scheme and the fourth order accurate
Dulfort-Frankel scheme15. J. Ouyang, L-zhang,
X-H-Zhang gave nonstandard element free
Galerkin method for solving unsteady convection
dominated problems16. They proposed element
free characteristics Galerkin Methods17 and a
variational  multiscale element free Galerkin
Methods18 for two dimensional Burgers
equation. In 2008 Xiaonan Wu Jiewei-Zhang
gave numerical solution of two dimensional
Burgers equation in unbounded domains by
artificial boundary method. This method is
based on the Hopf Cole transformation and
fourier series expansion.They obtain the exact
boundary condition and series of approximating
boundary conditions on the artificial boundary.

The original problem is reduced to an equivalent
problem on the bounded domain19. In 2008
D.L. Young C.M. Fan Etal Proposed the Eulerian
Lagrange’s method of fundamental solutions
for two dimensional unsteady Burgers equation20.
The method is meshless and is applicable for
irregular domains. In 1978 P.C. Jain, D,N.
Holla gave technique for two dimensional
Burgers equation21. A. Refik Bahadir22 used
fully implicit discretization where as V.K.
Shrivastava et al.23 proposed Crank Nicolson
scheme to solve two dimensional Burgers
equation.Both these method leads to difference
equations.Newtons Method is used to solve
these nonlinear systems.In 2010 Hangging
zhu,Huazhang shu Meiyu Ding24 proposed
Adomian Decomposition method to solve two
dimensional Burgers equation. Above
methods21,22,23,24 are either implicit or nonlinear
and are solved by Newton’s method. Since
methods are non linear evaluation of solution
is time consuming.

In this paper we construct a linear
finite difference method for two dimensional
Burgers equation by approximating second
order terms by using Crank Nicolson Scheme
and nonlinear terms by central differences. The
method is shown to be consistent and second
order in time and space. Two test problems are
solved for different initial and boundary conditions
at different time t and different Reynolds
number Re. In example one it is observed that
the numerical solutions are compatible with
exact solutions. In the second example
numerical solutions obtained by linear method
are compared with numerical solutions of
existing methods21, 22, 23, 24.
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The paper is arranged as follows. In section 2
we developed the finite difference scheme and
the scheme is shown to be consistent and second
order accurate in time and space. In section 3
numerical solutions of two test examples are
obtained by linear methods and results are
compared with analytic solution and numerical
solutions of other existing methods21,22,23,24.

2. Finite Difference Scheme for Two
Dimensional Nonlinear Burgers Equation:

Consider two dimensional Burgers
eqution

 

 

 (2.1)
With intial conditions

 

  (2.2)
And boundary conditions

 

  (2.3)

Where  

and   is its boundary u(x,y,t) and v(x,y,t)
are the velocity components to be determined

  are known functions and Re is
the Reynolds number. The computational
Domain D is discretized with uniform mesh

 where

 . Denote the approximations of

u(x,y,t) and v(x,y,t) at mesh points 

  by  and  resp 
 

and t represents the increment in time.

We approximate ut and vt by forward
difference, partial derivatives in non-linear terms
are replaced by central difference operator at
t=tn and t=tn+1.  where as second order
derivatives are approximated by usual Crank
Nicolson expression.

      Then discretization of equation (2.1) gives
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Define 

 

Rearrangement of equation (2.4) gives

 

 

And

 

We prove that the scheme given by
(2.5) is consistent and is of order two in space
time. The truncation error at t=tn, x=xi & y=yj
for u and v is given by

(2.5)

Sachin S.Wani, et. al. 159



 

And

 

On expanding above expression in
Taylors Series about (xi,yj,tn)  we get

    

+

 and

 

Thus along (2.1) the truncation error
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  and   is of 

 . Thus difference scheme for two
dimensional Burgers equation is consistent and
is of order two.

3. Numerical Results

Numerical solutions of two dimensional
non-linear Burgers equation (2.1) are obtained
by linear method given by equation (2.5) for
two different initial and boundary conditions.
The numerical solutions obtained by (2.5) are
compared with numerical solutions of existing
methods21,22,23,24 and exact solution. The
comparison of Numerical solutions obtained
by (2.5) for example 1 with ADM and exact
solution is given in Table 1 and 2. In table 3,4,5,6
the error in numerical solution obtained by (2.5)
are compared with the error in numerical
solution given by 21,22. It is observed from
tables 3,4,5 and 6 that the method (2.5) gives
more accurate solutions than fully implicit
method21 and are compatible with ADM
method24. Table 7,8,9 and 10 shows the
comparison of solution of (2.1) by Linear method
(2.5) and Crank Nicolson scheme for different
values of t and Reynolds number Re. The
comparison of numerical solution of Burgers
Equation by (2.5) for example 2 with existing
methods21,22,23,24 is shown in tables (11, 12, 13,
14).

Example 1: Exact solution of two
dimensional Burgers equation (2.1) using
Hopf Cole transformation is given in8 is as
follows

 

 

The initial and boundary conditions
are taken form exact solution.  The
computational domain for this problem is

 . The
numerical computations are performed using
uniform mesh .
Tables (1-8) gave comparison of numerical
solution with exact and other methods at different
time t and different Reynolds number Re.

Example 2: in this example compu-
tational domain is taken as

 

and Burgers equation (2.1) considered with
initial conditions

 

And boundary conditions

 0

 

This example is solved with 2020
mesh and t=0.0001 Re=50 at t=0.625 and
results are compared with other existing
methods21,22,23,24. The solution are listed in11-14

for comparison.
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Table 3.Comparison of absolute errors for u(x,y,t) at Re=100, at t=0.01
MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.1) 5.91368E-5 7.24132E-5 5.91472E-5 0.62305
(0.5,0.1) 4.84030E-6 2.42869E-5 4.84480E-6 0.50162
(0.9,0.1) 3.41000E-8 8.39751E-6 3.42106E-8 0.50001
(0.3,0.3) 5.91368E-5 8.25331E-5 5.91380E-5 0.62305
(0.7,0.3) 4.84030E-6 3.43163E-5 5.0678E-6 0.50162
(0.1,0.5) 1.64290E-6 5.62014E-5 1.63327E-6 0.74827
(0.5,0.5) 5.91368E-5 7.32522E-5 5.91538E-5 0.62305

Table 4. Comparison of absolute errors for u(x,y,t) at Re=100, at t=0.5.
MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.1) 2.77664E-4 5.13431E-4 3.21647E-4 0.54332
(0.5,0.1) 4.52081E-4 8.85712E-4 1.12088E-5 0.50035
(0.9,0.1) 3.37430E-6 6.53372E-5 8.3748E-8 0.50000
(0.3,0.3) 2.77664E-4 7.31601E-4 6.3383E-4 0.54332
(0.7,0.3) 4.52081E-4 6.27245E-4 3.55900E-5 0.50035
(0.1,0.5) 2.86553E-4 4.01942E-4 6.38835E-5 0.74221
(0.5,0.5) 2.77664E-4 3.46823E-4 8.17693E-4 0.54332

Table 5. Comparison of absolute errors for v(x,y,t) at Re=100,  at t=0.01.
MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.1) 5.91368E-5 8.35601E-5 5.91472E-5 0.87695
(0.5,0.1) 4.84030E-6 5.13642E-5 4.8448E-6 0.99838
(0.9,0.1) 3.41000E-8 7.03298E-6 3.42106E-8 0.99999
(0.3,0.3) 5.91368E-5 6.15201E-5 5.91538E-5 0.87695
(0.7,0.3) 4.84030E-6 5.41000E-5 5.0670E-6 0.99838
(0.1,0.5) 1.64290E-6 7.35192E-5 1.63327E-6 0.75173
(0.5,0.5) 5.91368E-5 8.51040E-5 5.91538E-5 0.87695

Table 6. Comparison of absolute errors for v(x,y,t) at Re=100,  at t=0.5.
MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.1) 2.77664E-4 6.17325E-4 3.21647E-4 0.95668
(0.5,0.1) 4.52081E-4 4.67046E-4 1.12088E-5 0.99965
(0.9,0.1) 3.37400E-6 1.70434E-5 8.3748E-8 1.00000
(0.3,0.3) 2.77664E-4 6.25402E-4 6.3383E-4 0.95668
(0.7,0.3) 4.52081E-4 4.66046E-4 3.55900E-5 0.99965
(0.1,0.5) 2.86553E-4 8.72422E-4 6.38835E-5 0.75779
(0.5,0.5) 2.77664E-4 6.23291E-4 8.17693E-4 0.95668
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Table 7. Comparison table with Re=500,  at t=0.5 &t=2 for u(x,y,t)
t=0.5 t=2

MeshPoint    CNS LINEAR EXACT     CNS LINEAR EXACT
(0.1,0.1) 0.48372 0.487322 0.50010 0.49725 0.497208 0.50000
(0.5,0.1) 0.50002 0.500015 0.50000 0.50025 0.50027 0.50000
(0.9,0.1) 0.50000 0.500000 0.50000 0.49932 0.500152 0.50000
(0.3,0.3) 0.49531 0.495305 0.50010 0.50687 0.507043 0.50000
(0.7,0.3) 0.50001 0.500012 0.50000 0.49929 0.499878 0.50000
(0.1,0.5) 0.74990 0.749900 0.75000 0.43945 0.439928 0.50048
(0.5,0.5) 0.49438 0.494385 0.50010 0.49959 0.499825 0.50000
(0.9,0.5) 0.49977 0.499980 0.50000 0.51376 0.501287 0.50000
(0.3,0.7) 0.75001 0.750008 0.75000 0.41654 0.415846 0.50048
(0.7,0.7) 0.49324 0.494292 0.50010 0.51050 0.503249 0.50000
(0.1,0.9) 0.75000 0.750000 0.75000 0.75003 0.749429 0.75000
(0.5,0.9) 0.75001 0.750002 0.75000 0.42895 0.423373 0.50048
(0.9,0.9) 0.47380 0.493362 0.50010 0.56293 0.507622 0.50000

Table 8 Comparison table with Re=500,  at t=0.5 &t=2 for v(x,y,t)
t=0.5 t=2

MeshPoint    CNS LINEAR EXACT     CNS LINEAR EXACT
(0.1,0.1) 1.01286 1.01268 0.99990 1.00276 1.002790 1.00000
(0.5,0.1) 1.0000 0.999985 1.00000 0.99976 0.999730 1.00000
(0.9,0.1) 1.0000 1.00000 1.00000 1.00068 0.999848 1.00000
(0.3,0.3) 1.00481 1.00469 0.99990 0.99313 0.992957 1.00000
(0.7,0.3) 0.99999 0.999988 1.00000 1.00072 1.000120 1.00000
(0.1,0.5) 0.75010 0.750103 0.75000 1.06055 1.060070 0.99952
(0.5,0.5) 1.00571 1.00561 0.99990 1.00041 1.000170 1.00000
(0.9,0.5) 1.00022 1.00002 1.00000 0.98624 0.998713 1.00000
(0.3,0.7) 0.74999 0.749992 0.75000 1.08346 1.084150 0.99952
(0.7,0.7) 1.00676 1.00571 0.99990 0.98950 0.996751 1.00000
(0.1,0.9) 0.75000 0.75000 0.75000 0.74997 0.750571 0.75000
(0.5,0.9) 0.74999 0.749998 0.75000 1.07105 1.076630 0.99952
(0.9,0.9) 1.02620 1.00664 0.99990 0.93707 0.992378 1.00000
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Table 9. Comparison table with Re=500,  at t=0.5 &t=2 for u(x,y,t)
t=0.5 t=2

MeshPoint    CNS LINEAR EXACT     CNS LINEAR EXACT
(0.1,0.1) 0.48714 0.487239 0.50010 0.49729 0.497244 0.50000
(0.5,0.1) 0.50002 0.500150 0.50000 0.50024 0.500267 0.50000
(0.9,0.1) 0.50000 0.500000 0.50000 0.49934 0.500152 0.50000
(0.3,0.3) 0.49519 0.495246 0.50010 0.50690 0.507083 0.50000
(0.7,0.3) 0.50001 0.500012 0.50000 0.49928 0.499877 0.50000
(0.1,0.5) 0.74990 0.749900 0.75000 0.43939 0.439812 0.50048
(0.5,0.5) 0.49429 0.494354 0.50010 0.49951 0.499728 0.50000
(0.9,0.5) 0.49978 0.493344 0.50000 0.51355 0.501296 0.50000
(0.3,0.7) 0.75001 0.750008 0.75000 0.41647 0.415613 0.50048
(0.7,0.7) 0.49325 0.494264 0.50010 0.51008 0.503158 0.50000
(0.1,0.9) 0.75000 0.750000 0.75000 0.75004 0.749420 0.75000
(0.5,0.9) 0.75001 0.750002 0.75000 0.42909 0.422900 0.50048
(0.9,0.9) 0.47275 0.493344 0.50010 0.56275 0.507666 0.50000

Table 10. Comparison table with Re=500,  at t=0.5 &t=2 for v(x,y,t)
t=0.5 t=2

MeshPoint    CNS LINEAR EXACT     CNS LINEAR EXACT
(0.1,0.1) 1.01286 1.012760 0.99990 1.00271 1.002760 1.00000
(0.5,0.1) 0.99999 0.999985 1.00000 0.99976 0.999733 1.00000
(0.9,0.1) 1.00000 1.000000 1.00000 1.00066 0.999848 1.00000
(0.3,0.3) 1.00481 1.004750 0.99990 0.99310 0.992917 1.00000
(0.7,0.3) 0.99999 0.999988 1.00000 1.00072 1.000120 1.00000
(0.1,0.5) 0.75010 0.750100 0.75000 1.06061 1.060190 0.99952
(0.5,0.5) 1.00571 1.005650 0.99990 1.00049 1.000270 1.00000
(0.9,0.5) 1.00022 1.000020 1.00000 0.98646 0.998704 1.00000
(0.3,0.7) 0.74999 0.749992 0.75000 1.08353 1.084390 0.99952
(0.7,0.7) 1.00676 1.005740 0.99990 0.98992 0.996842 1.00000
(0.1,0.9) 0.75000 0.750000 0.75000 0.74996 0.750580 0.75000
(0.5,0.9) 0.74999 0.749998 0.75000 1.07091 1.077100 0.99952
(0.9,0.9) 1.02725 1.006660 0.99990 0.93725 0.992334 1.00000
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Table 11. Comparison of computed values of u for Re=50 at t=0.625,N=20
MeshPoints CNS A.R.BAHADIR JAIN &HOLLA LINEAR
(0.1,0.1) 0.97146 0.96688 0.97258 0.971461
(0.3,0.1) 1.15280 1.14827 1.16214 1.152820
(0.2,0.2) 0.86307 0.85911 0.86281 0.863072
(0.4,0.2) 0.97981 0.97637 0.96483 0.979813
(0.1,0.3) 0.66316 0.66019 0.66318 0.663157
(0.3,0.3) 0.77230 0.76932 0.77030 0.772297
(0.2,0.4) 0.58180 0.57966 0.58070 0.581799
(0.4,0.4) 0.75856 0.75678 0.74435 0.758558

Table 12. Comparison of computed values of v for Re=50 at t=0.625,N=20
MeshPoints CNS A.R.BAHADIR JAIN &HOLLA LINEAR
(0.1,0.1) 0.09869 0.09824 0.09773 0.0986881
(0.3,0.1) 0.14158 0.14112 0.14039 0.141582
(0.2,0.2) 0.16754 0.16681 0.16660 0.167542
(0.4,0.2) 0.17110 0.17065 0.17397 0.171095
(0.1,0.3) 0.26378 0.26261 0.26294 0.263781
(0.3,0.3) 0.22654 0.22576 0.22463 0.226539
(0.2,0.4) 0.32851 0.32745 0.32402 0.328508
(0.4,0.4) 0.32500 0.32441 0.31822 0.324997

Table 13. Comparison of computed values of u for Re=500 at t=0.625,N=20
MeshPoints CNS A.R.BAHADIR JAIN &HOLLA LINEAR
(0.15,0.1) 0.96870 0.96650 0.95691 0.968969
(0.3,0.1) 1.03200 1.02970 0.95616 1.03202
(0.1,0.2) 0.86178 0.84449 0.84257 0.846187
(0.2,0.2) 0.87814 0.87631 0.86399 0.878141
(0.1,0.3) 0.67920 0.67809 0.67667 0.679202
(0.3,0.3) 0.79947 0.79792 0.76876 0.799471
(0.15,0.4) 0.66036 0.54601 0.54408 0.546743
(0.2,0.4) 0.58959 0.58874 0.58778 0.589589
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Conclusion

A Linear method is presented to
construct numerical solution of two dimensional
nonlinear Burgers equation. The scheme is
proved to be consistent and second order accurate
in time and space. This method is better than
existing methods21,22 since the scheme is a
linear the computation time is less than the time
requires for other nonlinear schemes. The two
test problems are solved for comparison with
exact & numerical solution of other existing
methods. The solution obtain by linear methods
is compatible with Adomian Decomposition
method and Crank Nicolson methods23,24.
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