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Abstract

A Linear method is constructed for numerical solution of two
dimensional non-linear Burgers equation. The scheme is derived from
Crank-Nicolson finite difference scheme for linear terms and averaging
for nonlinear terms. The method is shown to be consistent and second
order accurate in time and space. The numerical solutions are obtained
for two test problems at different time t and Reynolds number Re. The
numerical solutions are compared with exact solution and other existing
methods. Though the method is linear numerical solutions are compatible
with ADM and Crank-Nicolson method.
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1. Introduction

Burgers equation is an important
partial differential equation in fluid dynamics.
It has many applications in a variety of physical
and engineering areas such as modeling of
dynamics, heat conduction, acoustic waves
Jinvestigating the shallow water waves®?, in
examining the chemical reaction ,diffusion
model of Brusselator®, model of turbulence*®
and approximate theory of flow through a
shock wave travelling in viscous fluid®. In 1995

S.E. Esipov derived coupled Burgers equation
as a simple model of polydispersive sedimentation
or evaluation of scaled volume concentrations
of two kinds of particle in fluid suspensions’.
The two dimensional Burges equation is same
as the incompressible Navier Stokes equations
without the pressure gradient terms. This
constitutes an appropriate model for developing
computational algorithms for solving the
incompressible Navier Stokes equations.

In 1983 Fletcher J.D developed a
procedure for generating exact solutions for
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two dimensional Burgers equation®. In 1983
Fletcher C.J obtained numerical solutions of
one and two dimensional Burgers equation by
finite difference method and numerical solutions
are compared with exact solutions. Finite
difference method is proved to be suitable for
testing computational algorithms for solving
two dimensional Burgers equation®. In 1992
F.W. Wubs, E.D.de Goede developed an
explicit —implicit method for a class of time
dependent partial differential equations'®. J.H.
Heet al.™!, M.A. Abdau, A.A. Soliman'? used
variational iteration method to solve two
dimensional Burgers equation. In 2000
Solimann®® used the similarity reductions for
the partial differential equations to develop a
scheme for two dimensional Burgers equaton.
In 2001 D.Kaya gave explicit solution for coupled
viscous Burgers equation by decomposition
method. In 2004 S.F. Radwan used high order
accurate schemes for solving the unsteady two
dimensional Burgers equation. They also
discussed the fourth order accurate two point
compact scheme and the fourth order accurate
Dulfort-Frankel scheme®. J. Ouyang, L-zhang,
X-H-Zhang gave nonstandard element free
Galerkin method for solving unsteady convection
dominated problems®®. They proposed element
free characteristics Galerkin Methods®’ and a
variational multiscale element free Galerkin
Methods!® for two dimensional Burgers
equation. In 2008 Xiaonan Wu Jiewei-Zhang
gave numerical solution of two dimensional
Burgers equation in unbounded domains by
artificial boundary method. This method is
based on the Hopf Cole transformation and
fourier series expansion.They obtain the exact
boundary condition and series of approximating
boundary conditions on the artificial boundary.
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The original problem is reduced to an equivalent
problem on the bounded domain®. In 2008
D.L. Young C.M. Fan Etal Proposed the Eulerian
Lagrange’s method of fundamental solutions
for two dimensional unsteady Burgers equation®.
The method is meshless and is applicable for
irregular domains. In 1978 P.C. Jain, D,N.
Holla gave technique for two dimensional
Burgers equation®!. A. Refik Bahadir?? used
fully implicit discretization where as V.K.
Shrivastava et al.?> proposed Crank Nicolson
scheme to solve two dimensional Burgers
equation.Both these method leads to difference
equations.Newtons Method is used to solve
these nonlinear systems.In 2010 Hangging
zhu,Huazhang shu Meiyu Ding?* proposed
Adomian Decomposition method to solve two
dimensional Burgers equation. Above
methods?1:2223.24 are either implicit or nonlinear
and are solved by Newton’s method. Since
methods are non linear evaluation of solution
is time consuming.

In this paper we construct a linear
finite difference method for two dimensional
Burgers equation by approximating second
order terms by using Crank Nicolson Scheme
and nonlinear terms by central differences. The
method is shown to be consistent and second
order in time and space. Two test problems are
solved for different initial and boundary conditions
at different time t and different Reynolds
number Re. In example one it is observed that
the numerical solutions are compatible with
exact solutions. In the second example
numerical solutions obtained by linear method
are compared with numerical solutions of
existing methods?! 22 23 24,
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The paper is arranged as follows. In section 2
we developed the finite difference scheme and
the scheme is shown to be consistent and second
order accurate in time and space. In section 3
numerical solutions of two test examples are
obtained by linear methods and results are
compared with analytic solution and numerical

solutions of other existing methods?}:2223.24,

2. Finite Difference Scheme for Two
Dimensional Nonlinear Burgers Equation:

Consider two dimensional Burgers
eqution

1
U + Uty + VU = o (U + yy)

1
Ve + Uy + Vv = o (vex + 1yy)

(2.1)
With intial conditions

u(x,y,0)=f(x,y),(x,y) €D

v(x,y,0) =g(xy),(x,y) ED (2.2)
And boundary conditions
ulx,y,t) = filx,y,t) ,x,y€adD,t >0

v(xly't) = gl(x:y't);x,y € aD)t > 0 (23)

WhereD = {(x,y),a <x <b,a <y <b}
and @D is its boundary u(x,y,t) and v(x,y,t)
are the velocity components to be determined
f,9,f1& 91 are known functions and Re is

the Reynolds number. The computational
Domain D is discretized with uniform mesh

x; = a+iAx,y; = a+ jAywheredx =

X

a
. Denote the approximations of

Ay =
y n,
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u(x,y,t) and v(x,y,t) at mesh points (a + iAx,
a + jAy,nAt) by uf’; and v resp (i = 0,1,
2——-n,,j=012—-—— ny,,n=012---)
and At represents the increment in time.

We approximate u; and v; by forward
difference, partial derivatives in non-linear terms
are replaced by central difference operator at
t=t, and t=t,+1. where as second order
derivatives are approximated by usual Crank
Nicolson expression.

Then discretization of equation (2.1) gives

n+1 n n n
L] L] n+ i+1,] i-1,)
+u 1—

At b 4Ax
n+1 n+1
n Qi+1,j — Ui-1,j
bJ 4Ax

n n
a1 Qi1 — WUij-1
' 4Ay

n+1 n+1
n Wij+1 Ui
’ 4Ay

B 1
B 2Re(Ax)2[

n+1 n+1
Uivi,j — 2y

n+1 n n
tuiq U — 22U
n
+uily

1
+1 +1
* IRe(ay)? M T 2uj

n+1 n n
+ ui,j—1 + ui'j_'_l - Zul']
n
+up_4]
And
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n+l _ ,n n
Vij —Vij 4yt Vi1 = Vit
At b 4Ax

n+1 n+1
n Vit1,j — Vi-1j
Wi gax

n
4pnt Vije1 — Vi1
Ly 4Ay
n+1 n+1
vl}+1 —Viji-1
ij 4Ay

1
_ +1 +1
" 2Re(Ax)? [v‘n“'j ~ 2vij

+v!t

n+1 n
+ v 1,j +vl+1] 2v

i,j
+ vi—l,j]
1
+1 +1
+ 2Re(Ay)? [ 1?,11'+1 - ZUZ:L]'
+ v+ vl — 20
+ 4] (2.4)
Define At =k At =k at =
4Ax ~ "V 4aAy T ¥ 2Re(Ax)?

At
" Re(ay)? 2

Rearrangement of equation (2.4) gives

:l++11] (klu )
n+1[1 + k1(u1+1] ?—1,}') +2n;
+ 21,
?+111( kiugj —11)

:l}-‘-+11(k217 )
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unt
U ;- 1( kzv )
n+1
+ o (e — i.j—1)kz
— n
= (1-2r = 2rp)uf;
n n
t Uppq, 71 T U T

n n
T U T2 T U T2

And
21++11] (klu )
+ v 1
+ kz(v{’lj_l_l - vg,lj_l) + 2T1
+ 21,
+ vln+111( kyu; — 1)
+ 1]Ln;r+11(kzv?1' - )
L] 1( kzv )
+ un+1(vl+1] i—1,j)k1
=01-2r- Zrz)vl?fj

n n
T Vi, T Vi

+ vi’}jﬂrz + v}fj_lrz 25)

We prove that the scheme given by
(2.5) is consistent and is of order two in space

time. The truncation error at t=t,, x=X; & y=y;
for u and v is given by

T (x)
1
= Up + UUy + VU, — Re (uxx + uyy)

_ w(x;, ¥, tnv) = u(xi, ), tn)
At

1
 4Ax {ux Vi tn) [u(xi4 1, Y tnt1)
B u(xi—l'yi' tn+1)]
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+ u(xi' yj; tn+1)[u(xi+1J yj' tn)
= u(xi-1, 5, ta) ]}

1
— m {V(Xi; Vi tn) [u(xi, Yj+1s tn+1)

- u(xifyj—ll tn+1)]
+ v(xiij: tn+1)[u(xi'Yj+1; tn)
= u(xy,yj-1,ta)]}
1
+ 2Re(Ax)? [u (X141, V) tosr)
— 2u(xy, Y, tyer) + (Xm0, V) trea)
+u(xi1, ¥j tn) — 2u(x;, yj, t)

+ u(xi—li y]: tn)]
1
+ W [u(xiJYj+1J tn+1)

— Z'U-(xii Vi tn+1) + u(xi' YVi-1, tn+1)
+u(x; Vi ta) — 2u(xs ) ta)
+u(xy, ¥jo1, tn)]

And

Tir,lj+1(3’)
1
=V + VU, T UV, — Re (vxx + vyy)

. U(Xi, yjr tn+1) - v(xir yj' tn)
At

R CTCR T | TS
—v(xi1 Y tn)]

- u(xirYj» tn)[v(xi+1'yjr tnt1)

- V(xi—1»3’j; tn+1)]}

1
— m {U(Xi; y]: tn+1)[v(xi, yj+1r tn)

— (%, ¥j—1, tn) ]
+ v(xi, y]; tn)[v(xi! Yj+1; tn+1)

- v(xi' yj—l! tn+1)]}
1

+ 2Re(Ax)?
- ZU(Xi, Vi tn+1) + v(xi—ll Vi tn+1)
+ v(xi+1,yj, tn) — ZU(xi,yj, tn)

+v(xi-1, 35 )]
1

" 2Re(ay)?
— ZU(xi,yj, tn+1) + v(xi,yj_l, tns1)
+ v(xi'yj+1r tn) = Zv(xi,yj, tn)

+ v(x;, Y1, tn)]

[v(xi+1l Yj! tn+1)

[v(xi, yj+1) tn+1)

On expanding above expression in
Taylors Series about (x;,yjth) we get

T/ (x) = [ut + uu, + vuy, —

1 At
Re (uxx + uyy)]t 7*’

o((Ax)?, (Ay)?, (At) and
T (y) = [vt +uv, + vy,
1 At
" Re (Vax + vyy)]t >

+ o((Ax)?, (Ay)?%, (AD)?)

Thus along (2.1) the truncation error
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7 (x) and TS (y) is of 0((Ax)?, (Ay)?,

(At)®). Thus difference scheme for two
dimensional Burgers equation is consistent and
is of order two.

3. Numerical Results

Numerical solutions of two dimensional
non-linear Burgers equation (2.1) are obtained
by linear method given by equation (2.5) for
two different initial and boundary conditions.
The numerical solutions obtained by (2.5) are
compared with numerical solutions of existing
methods?1:22:2324 and exact solution. The
comparison of Numerical solutions obtained
by (2.5) for example 1 with ADM and exact
solution is given in Table 1 and 2. Intable 3,4,5,6
the error in numerical solution obtained by (2.5)
are compared with the error in numerical
solution given by 2122 It is observed from
tables 3,4,5 and 6 that the method (2.5) gives
more accurate solutions than fully implicit
method?! and are compatible with ADM

method?*. Table 7,8,9 and 10 shows the
comparison of solution of (2.1) by Linear method
(2.5) and Crank Nicolson scheme for different
values of t and Reynolds number Re. The
comparison of numerical solution of Burgers
Equation by (2.5) for example 2 with existing
methods?1-222324 js shown in tables (11, 12, 13,
14).

Example 1: Exact solution of two
dimensional Burgers equation (2.1) using
Hopf Cole transformation is given in® is as
follows

1
ulx,y,t) = 4 4(1 + eRe(~t=4x+4y)/32))
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3 1
v(x) y, t) = Z + 4(1 + e(Re(—t—4x+4y)/32))

The initial and boundary conditions
are taken form exact solution. The
computational domain for this problem is
D={(xy),0<x<10<y<1}. The
numerical computations are performed using
uniform mesh Ax = Ay = 0.05,At = 0.001.
Tables (1-8) gave comparison of numerical
solution with exact and other methods at different
time t and different Reynolds number Re.

Example 2: in this example compu-
tational domain is taken as

D={(xy),0<x<050<y<0.5}

and Burgers equation (2.1) considered with
initial conditions

u(x,y,0) = sin(mx) + cos(mwy)
v(x,y,0)=x+y
<050<y<05¢t=0

}OSx

And boundary conditions

u(0,y,t) = cos(my),u(0.5,y,t) = sin(nx)}
v(x,0,t) = x,v(x,0.5,t) = x + 0.5

<x<050<y<05¢t>0

This example is solved with 20x20
mesh and At=0.0001 Re=50 at t=0.625 and
results are compared with other existing
methods?2223:24_ The solution are listed in**14
for comparison.
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Table 3.Comparison of absolute errors for u(x,y,t) at Re=100, at t=0.01
MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.2) 5.91368E-5 7.24132E-5 5.91472E-5 0.62305
(0.5,0.1) 4.84030E-6 2.42869E-5 4.84480E-6 0.50162
(0.9,0.1) 3.41000E-8 8.39751E-6 3.42106E-8 0.50001
(0.3,0.3) 5.91368E-5 8.25331E-5 5.91380E-5 0.62305
(0.7,0.3) 4.84030E-6 3.43163E-5 5.0678E-6 0.50162
(0.1,0.5) 1.64290E-6 5.62014E-5 1.63327E-6 0.74827
(0.5,0.5) 5.91368E-5 71.32522E-5 5.91538E-5 0.62305
Table 4. Comparison of absolute errors for u(x,y,t) at Re=100, at t=0.5.
MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.2) 2.77664E-4 5.13431E-4 3.21647E-4 0.54332
(0.5,0.1) 4.52081E-4 8.85712E-4 1.12088E-5 0.50035
(0.9,0.1) 3.37430E-6 6.53372E-5 8.3748E-8 0.50000
(0.3,0.3) 2.77664E-4 7.31601E-4 6.3383E-4 0.54332
(0.7,0.3) 4.52081E-4 6.27245E-4 3.55900E-5 0.50035
(0.1,0.5) 2.86553E-4 4.01942E-4 6.38835E-5 0.74221
(0.5,0.5) 2.77664E-4 3.46823E-4 8.17693E-4 0.54332

Table 5. Comparison of absolute errors for v(x,y,t) at Re=100,At = 0.001 at t=0.01.

MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.1) 5.91368E-5 8.35601E-5 5.91472E-5 0.87695
(0.5,0.1) 4.84030E-6 5.13642E-5 4.8448E-6 0.99838
(0.9,0.1) 3.41000E-8 7.03298E-6 3.42106E-8 0.99999
(0.3,0.3) 5.91368E-5 6.15201E-5 5.91538E-5 0.87695
(0.7,0.3) 4.84030E-6 5.41000E-5 5.0670E-6 0.99838
(0.1,0.5) 1.64290E-6 7.35192E-5 1.63327E-6 0.75173
(0.5,0.5) 5.91368E-5 8.51040E-5 5.91538E-5 0.87695

Table 6. Comparison of absolute errors for v(x,y,t) at Re=100,At = 0.001 at t=0.5.

MeshPoint ADM BAHADIR LINEAR EXACT
(0.1,0.1) 2.77664E-4 6.17325E-4 3.21647E-4 0.95668
(0.5,0.1) 4.52081E-4 4.67046E-4 1.12088E-5 0.99965
(0.9,0.2) 3.37400E-6 1.70434E-5 8.3748E-8 1.00000
(0.3,0.3) 2.77664E-4 6.25402E-4 6.3383E-4 0.95668
(0.7,0.3) 4.52081E-4 4.66046E-4 3.55900E-5 0.99965
(0.1,0.5) 2.86553E-4 8.72422E-4 6.38835E-5 0.75779
(0.5,0.5) 2.77664E-4 6.23291E-4 8.17693E-4 0.95668
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Table 7. Comparison table with Re=500,At = 0.001 at t=0.5 &t=2 for u(x,y,t)

t=0.5 t=2
MeshPoint CNS LINEAR EXACT CNS LINEAR EXACT
(0.1,0.1) 0.48372 0.487322  0.50010 0.49725  0.497208 0.50000
(0.5,0.1) 0.50002 0.500015  0.50000 0.50025  0.50027  0.50000
(0.9,0.1) 0.50000 0.500000  0.50000 0.49932  0.500152 0.50000
(0.3,0.3) 0.49531 0.495305  0.50010 0.50687  0.507043 0.50000
(0.7,0.3) 0.50001 0.500012  0.50000 0.49929  0.499878 0.50000
(0.1,0.5) 0.74990 0.749900  0.75000 0.43945  0.439928 0.50048
(0.5,0.5) 0.49438 0.494385  0.50010 0.49959  0.499825 0.50000
(0.9,0.5) 0.49977 0.499980  0.50000 0.51376  0.501287 0.50000
(0.3,0.7) 0.75001 0.750008  0.75000 0.41654  0.415846  0.50048
(0.7,0.7) 0.49324 0.494292  0.50010 0.51050  0.503249 0.50000
(0.1,0.9) 0.75000 0.750000  0.75000 0.75003  0.749429 0.75000
(0.5,0.9) 0.75001 0.750002  0.75000 0.42895  0.423373 0.50048
(0.9,0.9) 0.47380 0.493362  0.50010 0.56293  0.507622 0.50000

Table 8 Comparison table with Re=500,At = 0.001 at t=0.5 &t=2 for v(x,y,t)

t=0.5 t=2
MeshPoint CNS LINEAR EXACT CNS LINEAR EXACT
(0.1,0.2) 1.01286 1.01268 0.99990 1.00276  1.002790 1.00000
(0.5,0.1) 1.0000 0.999985  1.00000 0.99976  0.999730 1.00000
(0.9,0.1) 1.0000 1.00000 1.00000 1.00068  0.999848 1.00000
(0.3,0.3) 1.00481 1.00469 0.99990 0.99313  0.992957 1.00000
(0.7,0.3) 0.99999 0.999988  1.00000 1.00072  1.000120 1.00000
(0.1,0.5) 0.75010 0.750103  0.75000 1.06055  1.060070 0.99952
(0.5,0.5) 1.00571 1.00561 0.99990 1.00041  1.000170 1.00000
(0.9,0.5) 1.00022 1.00002 1.00000 0.98624  0.998713 1.00000
(0.3,0.7) 0.74999 0.749992  0.75000 1.08346  1.084150 0.99952
(0.7,0.7) 1.00676 1.00571 0.99990 0.98950  0.996751 1.00000
(0.1,0.9) 0.75000 0.75000 0.75000 0.74997  0.750571 0.75000
(0.5,0.9) 0.74999 0.749998  0.75000 1.07105  1.076630 0.99952

(0.9,0.9) 1.02620 1.00664 0.99990 0.93707  0.992378 1.00000
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Table 9. Comparison table with Re=500,At = 0.01 at t=0.5 &t=2 for u(x,y,t)
t=0.5 t=2
MeshPoint CNS LINEAR EXACT CNS LINEAR EXACT
(0.1,0.1) 0.48714 0.487239  0.50010 049729  0.497244  0.50000
(0.5,0.1) 0.50002 0.500150  0.50000 0.50024  0.500267  0.50000
(0.9,0.1) 0.50000 0.500000  0.50000 0.49934  0.500152 0.50000
(0.3,0.3) 0.49519 0.495246  0.50010 0.50690  0.507083  0.50000
(0.7,0.3) 0.50001 0.500012  0.50000 0.49928  0.499877  0.50000
(0.1,0.5) 0.74990 0.749900  0.75000 043939  0.439812 0.50048
(0.5,0.5) 0.49429 0.494354  0.50010 0.49951  0.499728 0.50000
(0.9,0.5) 0.49978 0.493344  0.50000 0.51355  0.501296 0.50000
(0.3,0.7) 0.75001 0.750008  0.75000 0.41647  0.415613 0.50048
(0.7,0.7) 0.49325 0.494264  0.50010 0.51008  0.503158 0.50000
(0.1,0.9) 0.75000 0.750000  0.75000 0.75004  0.749420 0.75000
(0.5,0.9) 0.75001 0.750002  0.75000 0.42909  0.422900 0.50048
(0.9,0.9) 0.47275 0.493344  0.50010 0.56275  0.507666 0.50000
Table 10. Comparison table with Re=500, At = 0.01 at t=0.5 &t=2 for v(X,y,t)
t=0.5 t=2

MeshPoint CNS LINEAR EXACT CNS LINEAR EXACT
(0.1,0.1) 1.01286 1.012760  0.99990 1.00271  1.002760 1.00000
(0.5,0.1) 0.99999 0.999985  1.00000 0.99976  0.999733  1.00000
(0.9,0.1) 1.00000 1.000000  1.00000 1.00066  0.999848 1.00000
(0.3,0.3) 1.00481 1.004750  0.99990 0.99310  0.992917 1.00000
(0.7,0.3) 0.99999 0.999988  1.00000 1.00072  1.000120 1.00000
(0.1,0.5) 0.75010 0.750100  0.75000 1.06061  1.060190 0.99952
(0.5,0.5) 1.00571 1.005650  0.99990 1.00049  1.000270 1.00000
(0.9,0.5) 1.00022 1.000020  1.00000 0.98646  0.998704 1.00000
(0.3,0.7) 0.74999 0.749992  0.75000 1.08353  1.084390 0.99952
(0.7,0.7) 1.00676 1.005740  0.99990 0.98992  0.996842 1.00000
(0.1,0.9) 0.75000 0.750000  0.75000 0.74996  0.750580 0.75000
(0.5,0.9) 0.74999 0.749998  0.75000 1.07091  1.077100 0.99952
(0.9,0.9) 1.02725 1.006660  0.99990 0.93725  0.992334 1.00000
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Table 11. Comparison of computed values of u for Re=50 at t=0.625,N=20
MeshPoints CNS A.R.BAHADIR | JAIN &HOLLA | LINEAR
(0.1,0.2) 0.97146 0.96688 0.97258 0.971461
(0.3,0.1) 1.15280 1.14827 1.16214 1.152820
(0.2,0.2) 0.86307 0.85911 0.86281 0.863072
(0.4,0.2) 0.97981 0.97637 0.96483 0.979813
(0.1,0.3) 0.66316 0.66019 0.66318 0.663157
(0.3,0.3) 0.77230 0.76932 0.77030 0.772297
(0.2,0.4) 0.58180 0.57966 0.58070 0.581799
(0.4,0.4) 0.75856 0.75678 0.74435 0.758558
Table 12. Comparison of computed values of v for Re=50 at t=0.625,N=20
MeshPoints CNS A.R.BAHADIR | JAIN &HOLLA | LINEAR
(0.1,0.2) 0.09869 0.09824 0.09773 0.0986881
(0.3,0.1) 0.14158 0.14112 0.14039 0.141582
(0.2,0.2) 0.16754 0.16681 0.16660 0.167542
(0.4,0.2) 0.17110 0.17065 0.17397 0.171095
(0.1,0.3) 0.26378 0.26261 0.26294 0.263781
(0.3,0.3) 0.22654 0.22576 0.22463 0.226539
(0.2,0.4) 0.32851 0.32745 0.32402 0.328508
(0.4,0.4) 0.32500 0.32441 0.31822 0.324997
Table 13. Comparison of computed values of u for Re=500 at t=0.625,N=20
MeshPoints CNS A.R.BAHADIR | JAIN &HOLLA | LINEAR
(0.15,0.1) 0.96870 0.96650 0.95691 0.968969
(0.3,0.1) 1.03200 1.02970 0.95616 1.03202
(0.1,0.2) 0.86178 0.84449 0.84257 0.846187
(0.2,0.2) 0.87814 0.87631 0.86399 0.878141
(0.1,0.3) 0.67920 0.67809 0.67667 0.679202
(0.3,0.3) 0.79947 0.79792 0.76876 0.799471
(0.15,0.4) 0.66036 0.54601 0.54408 0.546743
(0.2,0.4) 0.58959 0.58874 0.58778 0.589589
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Table 14. Comparison of computed values of v for Re=500 at t=0.625,N=20

MeshPoints [ CNS A.R.BAHADIR | JAIN &HOLLA | LINEAR
(0.15,0.1) 0.09043 0.09020 0.10177 0.0923034
(0.3,0.1) 0.10728 0.10690 0.13287 0.107275
(0.1,0.2) 0.17295 0.17972 0.18503 0.180103
(0.2,0.2) 0.16816 0.16777 0.18169 0.168157
(0.1,0.3) 0.26268 0.26222 0.26560 0.262677
(0.3,0.3) 0.23550 0.23497 0.25142 0.235501
(0.15,0.4) 0.29019 0.31753 0.32084 0.317991
(0.2,0.4) 0.30419 0.30371 0.30927 0.304187

Conclusion equation”, Computational Math. Appl. 29,

A Linear method is presented to
construct numerical solution of two dimensional
nonlinear Burgers equation. The scheme is
proved to be consistent and second order accurate
in time and space. This method is better than
existing methods?!?? since the scheme is a
linear the computation time is less than the time
requires for other nonlinear schemes. The two
test problems are solved for comparison with
exact & numerical solution of other existing
methods. The solution obtain by linear methods
is compatible with Adomian Decomposition
method and Crank Nicolson methods?®24,
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