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Abstract

The unsteady flow of a dusty viscous incompressible fluid
through porous medium in a long rectangular channel under the influence
of time dependent pressure gradient has been studied. The solution of
governing equations of motion is obtained by the application of Finite
Fourier cosine transform and Laplace transform to study the behaviour
of the flow of fluid and the dust particles through porous medium. The
particular cases when the pressure gradient is (i) an absolute constant,
(ii) periodic function of time, (iii) an exponentially decreasing function
of time and (iv) tCte  ,  have been discussed in detail.

Ultra Scientist Vol. 25(1)A, 169-176 (2013).

Introduction

The study of fluids having uniform
distribution of solid spherical particles is of
interest in a wide range of areas of technical
importance. These areas include fluidization
(flow through packed beds), flow in rocket
tubes, where small carbon or metallic fuel
particles are present, environmental pollution,
the process by which rain drops are formed
by the coalescence of small droplets, which
might be considered as solid particles for the
purpose of examining their movement prior to
coalescence, combustion and more recently,
blood flow in capillaries.

       Considerable work has already been done

on such models of dusty fluid flow13. Saffman19

has discussed the stability of laminar flow of a
dusty gas. The basic theory of multiphase flow
is given by Soo21. Michael and Miller17 and
Liu14 studied the flow produced by the motion
of an infinite plate in a dusty gas occupying the
semi-infinite space above it. Michael16 studied
the steady motion of a sphere in a dusty gas.
Healy10 proposed a different set of perturbed
equations and studied the flow past a cylinder
and a flat plate with position normal to the
approach flow. Healy and Yang11 obtained an
exact solution for the problem using the
technique of Laplace transform. Vimala26 has
discussed the flow of a dusty gas between two
oscillating plates. Gupta and Gupta8 studied the
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flow of a dusty gas through a channel with an
arbitrary time varying pressure gradient. Later
on the large number of dusty viscous fluid flow
problems have been investigated by many
researchers such as: Gupta9; Srivastava24;
Sanyal and Dasgupta20; Gireesha and
Bagewadi5,6; Gireesha, Venkatesh and Bagewadi7

and Elangovan and Ratchagar4 etc. through
different type of channel under the influence
of time dependent pressure gradient.

Singh, Lal and Sharma22; Bhatnagar
and Bhardwaj3; Mal and Sengupta15; Mishra
and Bhola18; Varshney and Singh25; Kumar,
Jha and Shrivastava12; Singh, Singh and Jha23;
Agrawal, Agrawal and Varshney2 and Agrawal
and Singh1 etc. have discussed the unsteady
flow of dusty fluid through porous medium in
the channels of various cross-sections under
the arbitrary time varying pressure gradient.

The aim of present paper is to consider
the flow of viscous incompressible fluid with
embedded non-conducting small identical
spherical particles through porous medium in
a long rectangular channel under the influence
of a time varying pressure gradient, taking the
fluid and dust particles to be initially at rest.
The particular cases when (i) the pressure
gradient is an absolute constant, (ii) the pressure
gradient is a periodic function of time, (iii) the
pressure gradient is an exponentially decreasing
function of time and (iv) the pressure gradient
is, have also been discussed in detail.

Equations of the Problem:

     Using the rectangular Cartesian coordinate
system, the walls of the channel are taken to

be the planes x =±a and y =±b. The fluid and
dust particle velocities u(x,y,t) and v(x,y,t)
respectively, are in z-direction which is considered
along the axis of the channel. Taking the
number of density of small non-conducting dust
particles to be constant throughout the motion,
the appropriate momentum equations of motion
of dusty fluid through porous medium are:
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where u and v denote the velocities of fluid
and dust particle respectively; p is the fluid
pressure; M, the mass of a particle; K0, the
Stokes resistance coefficient, which for spherical
particle of radius r is 6r,  being the viscosity
of the fluid; N0, the number density of the particle;

t, the time;  p ,  and  p  are density of the
fluid, mass density of the particle and  material

density of the particle respectively;  
  ,

the kinematics viscosity of the fluid; K, the perme-

ability of porous medium and  
p

k 
' .

      Introducing the non-dimensional quantities:
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Initially, the fluid and particles are at
rest. The fluid flow through porous medium
takes place under the influence of time dependent
pressure gradient with no-slip boundary
conditions. From symmetric consideration, the
flow in region  0,0  yx is considered.
Accordingly, the boundary conditions are:
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and
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where 
 

a
bc 

Solution of the Problem:

For solving the problem, we choose
the finite Fourier cosine transform defined as
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It can be shown that the inversion
formulae for the finite cosine transforms
defined by (7) and (8) are given by
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respectively.

Multiplying eqns. (3) and (4) by
 yqxq nm cos.cos  and then integrating twice
within the limits 0 to 1 and 0 to c and using the
boundary conditions (5) and (6), we get
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Again, Applying Laplace transforms
to eqns. (11) and (12) under the transformed
initial conditions:

 00,0  tatVU
we get
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where  VU ,  and  )(sf are Laplace transforms
of the respective quantities.

Solving eqns. (13) and (14), we get
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are the roots of the equation.
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Now to obtain u and v we may invert
the Laplace transform by convolution theorem
and then applying the inversion formulae for
the finite cosine transforms, we get
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Particular Cases:

(i) When the Pressure Gradient is Constant:

Substituting f (t) = C (where C is an
absolute constant) in the above equations and
on simplifying, we get velocities of the fluid
and the dust particles
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(ii) When the Pressure Gradient is Periodic Function of Time:

Substituting f (t) = C sin t (where C and  are constants) in the above equations and
on simplifying, we get velocities of the fluid and dust particles
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respectively.
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(iii) When the Pressure Gradient is Exponentially Decreasing Function of Time:

Substituting  tCetf )(  (where C and  are an constants) in the above equations
and on simplifying, we get velocities of the fluid and dust particles
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(iv) When   tCtetf )(
The velocities of the fluid and the dust particles are
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Discussion

In the particular case (iv), if we put
 = 0, the velocities of the fluid and the dust
particles can be obtained for a pressure gradient,
which is linearly dependent on time.

If K = , all the velocity expressions
for fluid and dust particles can be obtained in
the absence of porous medium under the
influence of various pressure gradients and also
if k' = 0, the results are in agreement with
those of Gupta and Gupta8.
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