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Abstract

The aim of the present attempt was to investigate ananalysis
of joule heating and radiation on hydromagnetic peristalticflow with
porous medium through a coaxial asymmetric vertical inclined tapered
channel. The Mathematical modeling is investigated by utilizing long
wavelength and low Reynolds number assumptions. Analytical solutions
are obtained for the axial velocity, pressure gradient, temperature and
heat transfer coefficient. The effects of Hartmann number, porosity
parameter, volumetric flow rate, radiation parameter, non- uniform
parameter, gravitational parameter, shift angle, Prandtl number, Brinkman
number, heat source/sink parameter on axial velocity characteristics,
pressure gradient characteristics, temperature characteristics and heat
transfer coefficient characteristics are presented graphically and
discussed  in detail.
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1. Introduction

The peristaltic flow of a fluid is very

important for medical diagnosis and it has many
clinical applications. These applications are
swallowing of food bolus through the esophagus,
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the urine transport from a kidney to the bladder,
the movement of chime in the tract, the
transport of lymph in the lymphatic vessels and
the vasomotion of small blood vessel. The flow
of non-Newtonian fluids also has benefit to
the field environmental engineering, chemical
and biomedical. Furthermore, the peristaltic
pump is found in many applications of
medicine, engineering and water waste. That
is dialysis machine, a heart-lung machine,
infusion pump, concrete pump, sewage sludge
and etc. Magnetohydrodynamics deals with the
study of motion of an electrically conducting
fluid in presence of an applied magnetic field.
When a conducting fluid moves through a
magnetic field, electric currents are induced
in the fluid. The magnetic field exerts a force
known as the Lorentz force as a result the
flow field is modified. Solid or fluid material
moving in a magnetic field experiences an
electromagnetic force. If the material is
electrically conducting and a current path is
available, electric current ensue. Alternatively,
currents may be induced by change of the
magnetic field with time and also study of flow
through porous medium has received much
attention in recent years because of its
application in bio-physical and hydrological
problem, industrial, particularly in nuclear,
petroleum and chemical industries. The role
played by porous medium in the study of the
flow of blood and other fluids and electro-
osmosis.  This study is also useful to understand
the mechanism of transfer heat from the deep
interior of the earth to a shallow depth in the
geothermal regions which are of vital
importance in the present day grave power
crisis. The study of behavior of fluid saturated
porous media is known as Poromechanics.

LATHAM1 made init ial effort

regarding peristaltic mechanism of viscous
fluids. The primary mathematical models of
peristalsis obtained by a train of sinusoidal
waves in an infinitely long symmetric channel
or tube were introduced by Fung and Yih2 and
Shapiro et al.3. Peristaltic flow of a Newtonian
fluid in an asymmetric channel was described
by Mishra and Ramachandra Rao4. In another
attempt, Influence of convective conditions in
radiative peristaltic flow of pseudoplastic
nanofluid in a tapered asymmetric channel has
discussed by T.Hayat et al.5. F. M. Abbasi et
al.6 presented a theoretical study on Numerical
Analysis for Peristaltic Motion of MHD
Eyring-Prandtl Fluid in an Inclined Symmetric
Cannel with Inclined Magnetic Field. Some
pertinent studies on the present topic can be
found from the list of Refs. Such as Kh. S.
Mekheimer7, J.C. Misra, S. Maiti, G.C. Shit8,
M.H. Haroun9, N.S. Akbar et al.10, B.C.
Sarkar et al.11, Ravikumar 12-14.

In general heat transfer, play a vital
role in MHD flows.  When a fluid is at a different
temperature from that of its surroundings, the
thermal energy transfers from high-temperature
region to low temperature region until the fluid
and the surroundings attain thermal equilibrium.
This is called heat transfer or heat exchange.
Apart from this, there are many industrial,
chemical engineering processes, Automotive
Engineering, Thermal Insulations, Thermal
Engineering of electronic devices and system,
Material Processing, Power Plant Engineering,
Bio-hear Transfer, Aerospace Technology, etc.
Kabir, K. H. et al.15 presented a theoretical
study on effects of stress work on MHD
natural convection flow along a vertical wavy
surface with Joule heating. T. Hayat et al.16
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have conferred the characteristics of convective
heat transfer in the MHD peristalsis of Carreau
fluid with Joule heating. F.M. Abbasi et al.17

discussed on effects of inclined magnetic field
and Joule heating in mixed convective
peristaltic transport of non-Newtonian fluids.
Recently, Ravi Kumar18 investigated on
Analysis of  Heat Transfer on MHD Peristaltic
Blood Flow with Porous Medium through
Coaxial Vertical Tapered Asymmetric Channel
with Radiation – Blood Flow Study. Some
more works on this topic can be seen in (S.
Nadeem and Noreen Sher Akbar19, T. Hayat
et al.20, K. Vajravelu et al.21, S. Srinivas and
M. Kothandapani22, T. Hayat et al.23, .O. U.
Mehmood et al.24, Musharafa Saleem and Aun
Haider25, G. Radhakrishnamacharya, Ch.
Srinivasulu26, K. Vajravelu et al.27, K. Ramesh,
M. Devakar28, M Kothandapani et al.29 and
Sk Abzal et al.30).

2. Formulation of the problem :

The model simulates the peristaltic
transport of a viscous fluid through an infinite
two-dimensional asymmetric vertical tapered
channel through the porous medium. Asymmetry
in the flow is due to the propagation of
peristaltic waves of different amplitudes and
phase on the channel walls. We assume that
the fluid is subject to a constant transverse
magnetic field B0. The flow is generated by
sinusoidal wave trains propagating with steady
speed c along the tapered asymmetric channel
walls31.
The geometry of the wall surface is defined
as

 



  ctXdXmbHY

2sin2 (2.1)

  



  

 ctXdXmbHY 2sin1 (2.2)

Where b is the half-width of the channel, d is
the wave amplitude, c is the phase speed of
the wave and m (  1m  is the non-uniform
parameter,  is the wavelength, t is the time
and X is the direction of wave propagation.
The phase difference varies in the range 0 
 π, = 0 corresponds to symmetric channel
with waves out of phase and further b, d and
 satisfy the following conditions for the

divergent channel at the inlet  bd )
2

(cos 

It is assumed that the left wall of the
channel is maintained at temperature T0 while
the right wall has temperature T1.

Fig. 1 Schematic diagram of the physicalmodel

The equations governing the motion for the
present problem prescribed by
The continuity equation is
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The energy equation is
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u and v are the velocity components in the
corresponding coordinates, k1 is the permeability
of the porous medium,  is the density of the
fluid, p is the fluid pressure, k is the thermal
conductivity,  is the coefficient of the
viscosity, Q0 is the constant heat addition/
absorption, Cp is the specific heat at constant
pressure, σ is the electrical conductivity,g is
the acceleration due to gravity and T is the
temperature of the fluid.
The relative boundary conditions are

0U ,     0TT      at 1HY 

0U ,      1TT      at   2HY 

The radioactive heat flux (Cogley et al.31) is
given by
  10

24 TT
y
q



   (2.7)

here  is the mean radiation absorption
coefficient.

Introducing a wave frame (x, y) moving with
velocity c away from the fixed frame (X, Y)
by the transformation
x = X-ct, y = Y, u = U-c, v = V and
p(x) = P(X,t)                (2.8)
Introducing the following non-dimensional
quantities:
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where 
 

b
d

  is the non-dimensional amplitude

of channel  


 b
 ,  is the wave number,,

 

b
mk





1  is the non - uniform parameter ,

Re is the Reynolds number, M is the Hartman

number  
2b

kK  , Permeability parameter, Pr

is the Prandtl number, Ec is the Eckert number,
γ is the heat source/sink parameter, Br ( = EcPr)
is the Brinkman number,  η and η1 are
gravitational parameters and N2 is the radiation
parameter.

3. Solution of the problem :

In view of the above transformations (2.8) and
non-dimensional variables (2.9), equations
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(2.3-2.6) are reduced to the following non-
dimensional form after dropping the bars
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Applying long wave length approximation and
neglecting the wave number along with low-
Reynolds numbers. Equations (10-12) become
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The relative boundary conditions in dimen-
sionless form are given by
 1u ,    θ = 0   at   1hy  (3.7)

 1u ,    θ = 1   at    2hy  (3.8)

Where
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Where β is the non-dimensional slip velocity
parameter.
The solutions of velocity and temperature with
subject to boundary conditions (3.7) and (3.8)
are given by
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The coefficients of the heat transfer Zh1 and
Zh2 at the walls y = h1 and y = h2 respectively,
are given by
 xy hZh 11   (3.11)
 xy hZh 22   (3.12)
The solutions of the coefficient of heat transfer
at y = h1 and y = h2 are given by
  xy hZh 11 
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(3.14)
The volumetric flow rate in the wave frame is
defined by
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The pressure gradient obtained from equation
(3.15) can be expressed as
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The instantaneous flux Q (x, t) in the laboratory
frame is
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The average volume flow rate over one wave
period (T = λ/c) of the peristaltic wave is
defined as

 
 
T

dqdtQ
T

Q
0

11
              (3.18)

From the equations (3.16) and (3.18), the
pressure gradient can be expressed as
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4. Discussion of the problem

Fig. 2 illustrates the variation in axial
velocity for different values of the Hartman
number M (M = 1, 1.5, 2) with fixed Da = 0.3,
 = π/6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1, x =
0.6, t = 0.4, dp/dx = -0.5.We observe from this
figure that the axial velocity diminished with
increasing the values of Hartman number M.
Fig. 3 depicts the variation in axial velocity for
the variation in the porous parameter Da (Da
= 0.1, 0.2, 0.3) with M = 1, = π/6, α = π/6, η
= 0.5, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx =
-0.5. It shows that the axial velocity increases
when the porosity parameter increases. The
variation in axial velocity with different values
of gravitational parameter η (η = 0.1, 0.5, 1) is
shown in Fig. 4 with fixed M = 1,  = π/6, α =
π/6, η = 0.5, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4,
dp/dx = -0.5. We observe that an increasing
the values of gravitational parameter η
enhances the axial velocity. Fig. 5 displays the
effect of non-uniform parameter k1 (k1= 0.1,
0.2, 0.3) on the fluid velocity with fixed Da =
0.3,  = π/6, α = π/6, M = 1, η = 0.5, ε = 0.2, x
= 0.6, t = 0.4, dp/dx = -0.5. It can be seen
from this figure that an increase in the value

of non-uniform parameter k1 results in a fluid
velocity increases. Therefore, we conclude
from these figures that the fluid velocity (See
fig. 2-5) diminished when Hartmann number
increased and also we notice that the fluid
velocity enhances with increasing the values
of Da, η and k1.

Figure (2): Velocity for different values of M
with fixed Da = 0.3,  = π/6, α = π/6,η = 0.5,
ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = -0.5.

Figure (3): Velocity for different values of Da
with fixed M = 1,  = π/6, α = π/6,η = 0.5, ε =
0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = -0.5.

Q
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Figure (4): Velocity for different values of η
with fixed Da = 0.3,  = π/6, α = π/6,M = 1, ε
= 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = -0.5.

Figure (5): Velocity for different values of K1

with fixed Da = 0.3,  = π/6, α = π/6,M = 1, η
= 0.5, ε = 0.2, x = 0.6, t = 0.4, dp/dx = -0.5.

Fig. 6 displays the effect of Hartmann
number M on the pressure gradient with fixed
other parameters Da = 0.3,  = π/6, α = π/6, η
= 0.5, ε = 0.2, k1= 0.1, t = π/4, μ = 0.2, d = 2.It
shows from this figure that the pressure
gradient increases with increasing the values

of Hartmann number M (M = 1, 1.5, 2). Fig. 7
illustrates that the porous parameter Da on
pressure gradient with fixed M = 1,  = π/6, α
= π/6, η = 0.5, ε = 0.2, k1= 0.1, t = π/4, μ = 0.2,
d = 2. We notice that the pressure gradient
diminishes when increase in porosity parameter
Da. Influence of gravitational parameter η on
pressure gradient is shown in fig. 8. This figure
indicates the pressure gradient enhances when
an increase in gravitational parameter η (η =
0.1, 0.5, 1) with fixed other parameters. Fig. 9
displays the effect of volumetric flow rate Q
(Q  = 0.2, 0.4, 0.6) on pressure gradient with
fixed M = 1,  = π/6, α = π/6, Da = 0.3, η =
0.5, ε = 0.2, k1= 0.1, t = π/4, d = 2. It shows
from this figure that an increase in volumetric
flow rate μ results in pressure gradient
diminished. Effect of non- uniform parameter
k1 on pressure gradient is presented in
Fig.10.We observe that the pressure gradient
decreases with increase in non –uniform
parameter k1 (k1 = 0.1, 0.2, 0.3) with fixed M
= 1,  = π/6, α = π/6, Da = 0.3, η = 0.5, ε = 0.2,
μ = 0.2, t = π/4, d = 2. An important result
presented in Fig. 11. We notice from this figure
that the pressure gradient decreases in the
narrow part of the channel xε [0.5, 1] and here
we require a lesser amount of pressure
gradient to pass the flow in an asymmetric
channel to the values of increase in . The
pressure gradient increases in the wider part
of the channel xε [0, 0.5] with increasing the
values of . In the wider part of the channel,
the flow cannot pass easily. Therefore, it
required large pressure gradient to maintain
the same flux to pass in the wider part of the
channel.

Q
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Figure (6): Pressure gradient (dp/dx) for different
values of M with fixed Da = 0.3,  = π/6, α = π/6, η
= 0.5, ε = 0.2, k1= 0.1, t = π/4, μ = 0.2, d = 2.

Figure (7): Pressure gradient (dp/dx) for different
values of Da with fixed M = 1,  = π/6, α = π/6, η =
0.5, ε = 0.2, k1= 0.1, t = π/4, μ = 0.2, d = 2.

Figure (8): Pressure gradient (dp/dx) for different
values of η with fixed M = 1,  = π/6, α = π/6, Da =
0.3, ε = 0.2, k1= 0.1, t = π/4, μ = 0.2, d = 2.

Figure (9): Pressure gradient (dp/dx) for different
values of Q  with fixed M = 1,  = π/6, α = π/6, Da =
0.3, η = 0.5, ε = 0.2, k1= 0.1, t = π/4, d = 2.

Figure (10): Pressure gradient (dp/dx) for different
values of Q  with fixed M = 1,  = π/6, α = π/6, Da =
0.3, η = 0.5, ε = 0.2, μ = 0.2, t = π/4, d = 2.

Figure (11): Pressure gradient (dp/dx) for different
values of  with fixed M = 1, α = π/6, Da = 0.3, η =
0.5, k1= 0.1, ε = 0.2, μ = 0.2, t = π/4, d = 2.
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Influence of Hartmann number on
temperature distribution (θ) is displayed in
fig.12 with fixed Da = 0.3, N = 0.5, Pr =1, γ =
0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2,
k1= 0.1, x = 0.6, t = 0.4, p = 0.5. It was evident
that the temperature distribution enhances
when increase in Hartmann number M. Fig.
13 depicts the influence of porosity parameter
Da on temperature distribution (θ) with fixed
M = 1.5, N = 0.5, Pr =1, γ = 0.3, Br = 0.1,  =
π/6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1, x= 0.6, t
= 0.4, p = 0.5. It has been inferred that the
results in temperature of the fluid diminished
as increase in porosity parameter Da (Da =
0.1, 0.2, 0.3) Fig. 14. Shows that the variation
of radiation parameter on temperature
distribution with M = 1, Da = 0.3, Pr =1, γ =
0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2,
k1= 0.1, x= 0.6, t = 0.4, p = 0.5.It could noted
that the temperature distribution increases with
increase in radiation parameter N (N = 0.5,
0.7, 0.9). Variation of Prandtl number Pr (Pr
= 1, 3, 5) on temperature distribution has been
plotted in Fig. 15. It was observe from graph
that the temperature of the fluid enhances when
increase in Prandtl number Pr with fixed other
parameters. Fig.16. displays the effect of
Brinkman number Br on temperature of the
fluid (θ) with   fixed M = 1, Da = 0.3, N = 0.5,
γ = 0.1, Pr = 1,  = π/6, α = π/6, η = 0.5, ε =
0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5. Indeed, the
temperature of the fluid increases with increase
in Brinkman number Br (Br = 0.1, 0.2, 0.3).
Fig. 17 depicts to examine the effect of
gravitational parameter η on temperature of
the fluid with fixed M = 1, Da = 0.3, N = 0.5,
γ = 0.1, Pr = 1, Br = 0.1,  = π/6, α = π/6, ε =
0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5.This figure
shows that the results in temperature of the
fluid diminished as increase in gravitational

parameter η (η = 0.1,0.5,1). Fig. 18 shows to
examine the effect of heat source/sink
parameter γ (γ = 0.1, 0.3, 0.5) on temperature
distribution with M = 1, Da = 0.3, N = 0.5, η =
0.5, Pr = 1, Br = 0.1,  = π/6, α = π/6, ε = 0.2,
k1= 0.1, x= 0.6, t = 0.4, p = 0.5.This figure
shows that the temperature of the fluid
enhanced with increasing the values of heat
source/sink parameter γ.

Figure (12): Temperature () for different
values of M with fixed Da = 0.3, N = 0.5, Pr
=1, γ = 0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5,
ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5.

Figure (13): Temperature () for different
values of Da with fixed M = 1.5, N = 0.5,Pr
=1, γ = 0.3, Br = 0.1,  = π/6, α = π/6, η = 0.5,
ε = 0.2, k1= 0.1,x= 0.6, t = 0.4, p = 0.5.
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Figure (14): Temperature () for different values of
N with fixed M = 1, Da = 0.3,Pr =1, γ = 0.1, Br = 0.1,
 = π/6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1,x= 0.6, t = 0.4,
p = 0.5.

Figure (15): Temperature () for different values of
Pr with fixed M = 1, Da = 0.3, N = 0.5,           γ = 0.1,
Br = 0.1, = π/6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1, x=
0.6, t = 0.4, p = 0.5.

Figure (16): Temperature () for different values of
Br with fixed M = 1, Da = 0.3, N = 0.5,   γ = 0.1, Pr =
1,  = π/6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1, x= 0.6, t =
0.4, p = 0.5.

Figure (17): Temperature (θ) for different values of
η with fixed M = 1, Da = 0.3, N = 0.5,γ = 0.1, Pr = 1,
Br = 0.1,  = π/6, α = π/6, ε = 0.2, k1= 0.1, x= 0.6, t =
0.4, p = 0.5.

Figure (18): Temperature () for different values of
γ with fixed M = 1, Da = 0.3, N = 0.5, η = 0.5, Pr = 1,
Br = 0.1,  = π/6, α = π/6, ε = 0.2, k1= 0.1, x= 0.6, t =
0.4, p = 0.5.

Hartmann number M on heat transfer
coefficient at the wall y = h1 is presented in
Fig. 19 with Da = 0.3, N = 0.5, Pr =1, γ = 0.1,
Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1,
t=0.4, p = 0.5. This figure reveals that the heat
transfer coefficient increases in the portion of
the inclined tapered channel x ε [0, 0.05] U
[0.58, 1] and decreases in the other portion of
the inclined tapered channel x ε [0.05, 0.58]
with increase in M (M = 1, 1.5, 2). Fig. 20 shows
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the effect of porosity parameter Da on heat
transfer coefficient at the wall y = h1 with M
=1, N = 0.5, Pr =1, γ = 0.1, Br = 0.1,  = π/6,
α = π/6, η = 0.5, ε = 0.2, k1= 0.1, t = 0.4, p=
0.5.We observe from this figure that the results
in the heat transfer coefficient is not significant
in the entire inclined tapered channel. This may
be due to the porosity parameter. We observe
that the heat transfer coefficient gradually
increases in part of the channel x ε [0.15, 0.5]
and then decreases in the part of the channel
x ε [0.5, 0.9] with increase in porosity
parameter Da. Fig. 21 depicts to examine the
effect of radiation parameter on heat transfer
coefficient at the wall y = h1 with M =1, Da =
0.3, Pr =1, γ = 0.1, Br = 0.1,  = π/6, α = π/6,
η = 0.5, ε = 0.2, k1= 0.1, t = 0.4, p= 0.5. We
notice that the heat transfer coefficient
increases in the portion of the portion channel
x ε [0, 0.05] U [0.58, 1] and then decreases in
the other portion of the channel x ε [0.05, 0.58]
with increase in N (N = 0.5, 0.7, 0.9). Fig. 21
reveals the heat transfer coefficient at the wall
y = h1 with Prandtl number Pr being fixed M
=1, Da = 0.3, N= 0.5, γ = 0.1, Br = 0.1,  = π/
6, α = π/6, η = 0.5, ε = 0.2, k1= 0.1, t = 0.4, p=
0.5.It can be notice that the heat transfer
coefficient enhances in the portion of the
channel x ε [0, 0.05] U [0.58, 1] and then
diminished in the other portion of the channel
x ε [0.05, 0.58]  with increasing the values of
Prandtl number Pr (Pr = 1, 3, 5). Fig. 23
illustrates the variation in heat transfer
coefficient at the wall y = h1 with Brinkman
number Br being fixed M =1, Da = 0.3, N=
0.5, Pr =1, γ = 0.1,  = π/6, α = π/6, η = 0.5, ε
= 0.2, k1= 0.1, t = 0.4, p= 0.5. This figure
indicates that the heat transfer coefficient
enhances in the portion of the inclined tapered

channel x ε [0, 0.05] U [0.58, 1] and then
diminished in the rest of the inclined tapered
channel x ε [0.05, 0.58]  when increase
Brinkman number Br (Br = 0.1,0.2,0.3).
Influence of gravitational parameter η on heat
transfer coefficient at the wall y = h1  is
presented in fig. 24 with fixed M =1, Da = 0.3,
N= 0.5, Pr =1, Br = 0.1, γ = 0.1,  = π/6, α =
π/6, ε = 0.2, k1= 0.1, t = 0.4, p= 0.5.It can be
notice that the heat transfer coefficient
enhances in the portion of the channel x ε [0.05,
0.58] and then diminished in the portion of the
x ε [0.58, 1] with increase in gravitational
parameter η. Fig. 25 reveals the variation in
heat transfer coefficient at the wall y = h1 with
heat source/sink parameter γ (γ = 0.1, 0.3, 0.5)
being fixed M =1, Da = 0.3, N= 0.5, Pr =1, Br
= 0.1, η = 0.5,  = π/6, α = π/6, ε = 0.2, k1=
0.1, t = 0.4, p= 0.5. We notice from this figure
that the results in  heat transfer coefficient
enhances in the portion of the inclined tapered
channel x ε [0, 0.05] U [0.58, 1] and then
diminished in the rest of the inclined tapered
channel x ε [0.05, 0.58] when increase in  heat
source/sink parameter γ.

Figure (19): Heat transfer coefficient (y = h
1
) for

different values of M with fixed Da = 0.3, N = 0.5, Pr
=1, γ = 0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2,
k1= 0.1, t = 0.4, p= 0.5.
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Figure (20): Heat transfer coefficient (y = h1) for
different values of Da with fixed M =1,N = 0.5, Pr
=1, γ = 0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2,
k1= 0.1, t = 0.4, p= 0.5.

Figure (21): Heat transfer coefficient (y = h
1
) for

different values of N with fixed M =1, Da = 0.3, Pr
=1, γ = 0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2,
k1= 0.1, t = 0.4, p= 0.5.

Figure (22): Heat transfer coefficient (y = h
1
) for

different values of N with fixed M =1, Da = 0.3, N=
0.5, γ = 0.1, Br = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2,
k1= 0.1, t = 0.4, p= 0.5.

Figure (23): Heat transfer coefficient (y = h
1
) for

different values of N with fixed M =1, Da = 0.3, N=
0.5, Pr =1, γ = 0.1,  = π/6, α = π/6, η = 0.5, ε = 0.2, k1=
0.1, t = 0.4, p= 0.5.

Figure (24): Heat transfer coefficient (y = h1) for
different values of η with fixed M =1, Da = 0.3, N=
0.5, Pr =1, Br = 0.1, γ = 0.1,  = π/6, α = π/6, ε = 0.2,
k1= 0.1, t = 0.4, p= 0.5.

Figure (25): Heat transfer coefficient (y = h1)
for different values of η with fixed M =1, Da
= 0.3, N= 0.5, Pr =1, Br = 0.1, η = 0.5,  = π/
6, α = π/6, ε = 0.2, k1= 0.1, t = 0.4, p= 0.5.
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Conclusions

In this paper, we have proposed a
theoretical study of ananalysis of joule heating
and radiation on hydromagnetic peristalticflow
with porous medium through a coaxial
asymmetric vertical inclined tapered channel.
The study has paid a special attention to
examining the effects of Hartmann number,
porosity parameter, volumetric flow rate,
radiation parameter, non-uniform parameter,
gravitational parameter, shift angle, Prandtl
number, Brinkman number, heat source/sink
parameter on the flow characteristics. We
have concluded the following key observations:
(1) The axial velocity increases with increase

in porosity parameter Da, gravitational
parameter η and non-uniform parameter k1.

(2) The axial velocity diminished with increase
in Hartmann number M.

(3) Pressure gradient enhances with an increase
in Hartmann number M and gravitational
parameter η.

(4) Pressure gradient diminished with increase
in porosity parameter Da, non-uniform
parameter k1and volumetric flow rate Q .

(5) The temperature of the fluid enhances with
an increase in Hartmann number M, radiation
parameter N, Prandtl number Pr, Brinkman
number Br and heat source/sink parameter γ.

(6) The temperature of the fluid diminished with
increase in porosity parameter Da and
gravitational parameter η.

(7) Heat transfer coefficient increases in the
portion of the inclined tapered channel x ε
[0, 0.05] U [0.58, 1] and decreases in the
other portion of the inclined tapered channel
x ε [0.05, 0.58] with increase in Hartmann
number M, radiation parameter N, Prandtl
number Pr, Brinkman number Br and heat
source/sink parameter γ.

(8) Heat transfer coefficient gradually increases
in part of the channel x ε [0.15, 0.5] and then
decreases in the part of the channel x ε
[0.5, 0.9] with an increase in porosity
parameter Da.

(9) Heat transfer coefficient enhances in the
portion of the channel x ε [0.05, 0.58] and
then  diminished  in the  portion of the x ε
[0.58, 1] with an increase in gravitational
parameter η.
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