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Abstract

In this paper for the first time two new notions in fuzzy
graphs viz., vertex-edge matrix (v-e matrix) of a fuzzy graph and
dominant fuzzy graph graphs are introduced. Several properties
enjoyed by them are enumerated. Some interesting results in this
direction is obtained.
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Introduction

This paper introduces two new concepts
related with fuzzy graphs and proves some
interesting properties about them. This paper
has three sections. Section one is introductory
in nature. Section two introduces the new
notion regarding fuzzy graphs and derives a
few interesting properties about them. The final
section gives conclusions based on our study.

1 Preliminaries :

In this section we recall the basic
properties1,2.

Definition 1.1 The scalar cardinality
of a fuzzy set µ defined on a finite universal
set X is denoted by |µ| and is defined as

.

      Definition 1.2 A fuzzy graph (undirected
and without loops)   is a non-
empty finite set V together with a pair of
functions  and 

such that 

 and  .

µ is called the fuzzy vertex set and  is called
the fuzzy edge set.

Definition 1.3 A fuzzy vertex u V
is called an active vertex if µ(µ)>0. A fuzzy
graph is said to be an active fuzzy graph if all
its fuzzy vertices are active. That is, the support
of the function µ is the whole of V.
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Note: Throughout our discussion we
consider only active fuzzy graphs without
explicitly mentioning it. We also write
G=(V,µ,) as  G=(µ,) when the underlying
vertex set is clear from the context.

Definition 1.4 A path P in a fuzzy
graph G=(V,µ,) is a sequence of distinct vertices
(except possibly u0 and un) 
such that  .   

is called the length of the path.

We call P a cycle if u0 = un and n  3.

Definition 1.5 Consider the Cartesian
product  of graphs

 and  .  Then

  and 

 .

Let µi be a fuzzy subset of Vi and ,  i a fuzzy
set of  . Define fuzzy subsets µ1µ2

of V and 12 of X as follows:

;
 , 

 ;

 , 

.

Let (µi, i) be a partial fuzzy subgraph of
Gi,i=1,2. Then (   is a partial
fuzzy subgraph of G and is called the Cartesian
product of (µ1, 1) and (µ2, 2).

Theorem 1.1 If A=[aij] is a symmetric
n  n strictly diagonally dominant matrix with
positive diagonal entries then A is positive
definite.

Definition 1.6 A fuzzy graph G=(V,µ,)
is said to be complete if 

.

2 Definition of vertex-edge matrix (v-e
matrix) of a fuzzy graph and its properties:

In this section for the first time we
define the notion of a v-e matrix of a fuzzy
graph. We make a list of properties enjoyed
by these new v-e matrices. Further we prove
v-e matrices obtained by different orderings
of the vertices lead only to the same charac-
teristic equation. This is also represented by
some examples. Further the new definition of
dominant fuzzy vertex is introduced. This
dominant fuzzy vertex also satisfies certain list
of properties which are enumerated in this
section. We prove the v-e matrix of a fuzzy
graph with dominant fuzzy vertices is positive
definite. Also we prove, if two fuzzy graphs
have their fuzzy vertices to be dominant then
their Cartesian product need not in general be
a dominant fuzzy graph.

We now proceed to define the vertex-
edge matrix of a fuzzy graph.

Definition 2.1 Let G=(V,µ,) be a fuzzy
graph with |V|=n. Let  
be an ordered set of vertices. The vertex-edge
matrix of the fuzzy graph G with respect to
the ordered set V is denoted by
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 .

Thus, in this way, any given fuzzy
graph may be represented by a matrix. Also,
given any symmetric v-e matrix with entries
from [0,1] such that the diagonal entries are
greater than or equal to the corresponding
entries in the rows (and hence columns because
of symmetry), we can have the associated
fuzzy graph. All these are represented by the
following examples.

Example 2.1 Consider the following
fuzzy graph G

The v-e matrix mV(G) associated with this
graph G is as follows:

                 

. 

Example 2.2 Consider the following
symmetric matrix M with entries from [0,1]
such that each diagonal entry is positive and is
greater than or equal to the corresponding
entries in each row(and hence column);

 .

 
 

 

   

 

  

 

Its corresponding fuzzy graph is given in the
following.

The following results are true.

Result 2.1 A v-e matrix of a fuzzy graph
is symmetric since  

 .

Result 2.2 By the definition of fuzzy
graph, we have 

  and therefore, the diagonal entries
are greater than or equal to any other entries
in the respective rows and columns.

Result 2.3 If G=(V,µ,) is a path and
V is an ordered set of vertices such that they
are ordered in the order of the path (sequence
of vertices in the path), then the matrix of G
with respect to this ordered vertex set is a
tridiagonal v-e matrix.

Result 2.4 The trace of a v-e matrix
of G gives the scalar cardinality of its fuzzy
vertex set.

Result 2.5 Since the v-e matrix of a
fuzzy graph is a real symmetric matrix, all its
eigen values are real.

Result 2.6 Every v-e matrix of a fuzzy

 
 

 

   

 

  

 

 

 



graph is diagonalizable.

We now discuss about the  properties
of v-e matrices of G corresponding to different
ordered vertex sets.

Let G=(V,µ,) be a fuzzy graph with
|V|=n. The n vertices of V can be ordered in
n! ways. And so there are n! v-e matrices
(not necessarily distinct), all of which would
represent the same fuzzy graph G.

Proposition 2.1 Let G=(V,µ,) be a
fuzzy graph with |V|=n2 and let A and B denote
two v-e matrices of G obtained from two
different ordering of the vertices. Then A can
be obtained from B (and vice-versa) by a series
of alternate row and column interchanges.

Theorem 2.1 Let A and B denote two
v-e matrices of G=(V,µ,) obtained from two
different ordering of the vertices. Then A and
B have the same characteristic equation.

Proof The characteristic matrix of B
is [B-I] and it can be obtained by a series of
alternate row and column interchanges of [B-I],
and therefore its determinant value is unaltered.
This  is because when two rows (or columns)
of a determinant are interchanged its sign is
interchanged. However, corresponding to each
row interchange, we have a column interchange
also hence this double negation makes no
change in the determinant value of the charac-
teristic matrix. Thus the determinant values
of these matrices are the same. Or equivalently,
they have the same characteristic equations.

Corollary 2.1 :
i. tr A = trB
ii. det A = trB

iii. The eigen values of A and B are the same.

The following results can be easily proved

Theorem 2.2: Let G=(V,µ,) be a
fuzzy graph with |V|=n2 and let A and B
denote two v-e matrices of G obtained from
two different ordering of the vertices. Then A
and B are similar.

Proof : By theorem 2.1, A and B have
the same characteristic equation and hence
the same eigen values. Let     be
the eigen values of  A (and hence B also). By
Result 2.6 both A and B are diagonalizable. Let
A be similar to a diagonal matrix  D and B  be similar
to a diagonal matrix say D'. Without loss of
generality, assume that   .
Then   where

 is a permutation of 1, 2,
3, …, n. Let S  and T be non-singular matrices
such that  and  .

Note that the matrices D and D' are
similar. That is, there exists a non-singular
matrix U such that  . Now,,

. Thus B is
similar to  . Hence the theorem.

Result 2.7 It is not necessary that all
the n! v-e matrices are distinct. This is illustrated
by the following example.

     Example 2.3 Let   and  

be the two v-e matrix of a fuzzy graph with
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two fuzzy vertices u1 and u2. If a=b then A=B.
So in this case the 2! = 2 matrices are the
same.

Here the new concept of strict fuzzy
graph is given.

Definition 2.2 A fuzzy graph G=(V,µ,)

is said to be a strict fuzzy graph if 
 .

The following results are direct.

Result 2.8 A strict fuzzy graph
G=(V,µ,) with |V|>1 is not complete. (For, if

G is a strict fuzzy graph then 
 and so

.) 

Result 2.9 The diagonal entries of a
strict fuzzy graph are strictly greater than all
other entries in the respective rows and
columns.

Next we proceed onto define the
notion of dominant fuzzy vertex.

Definition 2.3 A fuzzy vertex uk in a
fuzzy graph G=(V,µ,) is said to be a dominant
(fuzzy) vertex if

   .

Result 2.10 Every dominant vertex is
an active vertex. (For, if uk is a dominant vertex

then   and
hence ).

Result 2.11 A complete fuzzy graph
G=(V,µ,) with |V|>1 cannot have a dominant
vertex.

Theorem 2.3 Let V be an ordered set
of vertices and let A be the v-e matrix of
G=(V,µ,) such that every fuzzy vertex of G
is dominant. Then A is positive definite. However
the converse is not true.

Proof Note that A is a real symmetric
matrix. Each fuzzy vertex of G is dominant
implies, A is strictly diagonally dominant. Also
since every dominant vertex is an active vertex,
each diagonal entry is positive. Now A satisfies
all the requirements in the hypothesis of
Theorem 1.1. Hence A is positive definite.

The converse of the above theorem
is not true. That is, there are fuzzy graphs
whose v-e matrix is positive definite but not
all its fuzzy vertices are dominant.

The example below shows that none
of the fuzzy vertices of the fuzzy graph
associated with the given v-e matrix is dominant
and moreover it is positive definite.

Example 2.4 Consider the following
v-e matrix of a fuzzy graph G with respect to
the ordered vertex set V.

      
 

The eigen values 0.0291, 0.0483,
0.1436, 1.9789 are all positive however none
of its fuzzy vertices is dominant.
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Theorem 2.4 Let G1 and G2 be two
fuzzy graphs such that each of their fuzzy
vertices are dominant. Then it is not necessary
that every fuzzy vertex of G, the Cartesian
product of G1 and G2 is also dominant.

Proof The proof is by an example.

Let

 

and

 

be the v-e matrix of G1 and G2 respectively.

Let G=G1G2  be the Cartesian product of G1

and G2.

      
 

is the v-e matrix of G. Here we see that all the
fuzzy vertices of both G1 and G2 are dominant
but none of the fuzzy vertices of G is dominant.

3 Conclusions

In this paper, we have defined for the
first time the notion of v-e matrix of a fuzzy
graph and give a list of properties associated
with this definition. Secondly we introduce the
notion of dominant vertex of a fuzzy graph and
prove that the Cartesian product of two dominant
fuzzy graphs need not in general be dominant.
Most of the situation is illustrated by examples.
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