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Abstract

In this paper we generalize the Fibonacci sequence in case
multiplicative coupled Fibonacci sequence. We consider two infinite

sequences {ai }:io and {ﬂ}zo which have given eight initial values

|
and we derive new identities.
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1. Introduction

T he concept of multiplicative coupled
Fibonacci sequences was first introduced by
Atanassov! in 1995 and also discussed many
curious properties and new direction of gene-
ralization of Fibonacci sequence. Atanassov
was defined and studied about four different
ways to generate coupled Fibonacci sequences
and called them 2-Fibonacci sequences of

second order. Let {ai}io and {ﬂi}:io be

First Scheme
a=a, fy=b, ay=c, py=d

U2 = Pria - Brr N20

Priz =gy - &y, N20.

two infinite sequences and let @, b, ¢ and
d bearbitrary four arbitrary real numbers with
initial values oy = a, B, =b, o, =¢C, S, =d,
a,=¢pB,="1.

Then four different schemes of

multiplicative coupled Fibonacci sequences of
second order as follows:

Second Scheme
a=a, fy=b, ay=c, p=d
Opyp =0y - By N20

ﬂn+2 :ﬂn+1 - Ay n>0.
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Third Scheme

a,=a, f,=b, a;=c, p,=d

Opio = Pray - Oy N20
ﬁn+2:an+1 'ﬁn ’ n>0.
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Fourth Scheme

a,=a, f,=b, a;=c, p,=d
Apip =0pyy - Ky, n>0

ﬁn+2:ﬁn+1 'ﬁn ) nZO

Many work has been done on the multiplicative coupled Fibonacci sequences. Rathore
et al.® studied fundamental properties of the multiplicative coupled Fibonacci sequences. Harne?

consider two infinite sequences {ai}io and {ﬂl}io and six arbitrary real numbers

a, b, c, d, e andf be given. The eight different multiplicative schemes for multiplicative

coupled Fibonacci sequences are as follows:

a,=4a, Bo=Db, a, =

First Scheme a .., = ..,

ﬁn+3 = Uqn

c, B
ﬂn+1'ﬂn 1 n

d,a, =¢,p, =f

v

, h>0.

a,=a, B,=b, ay=c, p=d,a,=¢,6,="f

Second Scheme _
an+3 - an+2 '

Oy 0 » N20

Priz=Pniz - Pnag B N2 0.

ag=a, fy=b, ay=c, f=d,a,=¢,p,=f

Third Scheme .53 = B.2 -

ﬂn+3 = an+2

ﬂn+l' An n=0
. Opy By, N20.

a,=a, B,=b, ay=c, p,=d,a,=¢,6,="f

Fourth Scheme O, ,3=0Q,> .

ﬂn+l' ﬁn ' nZO

ﬂn+3 :ﬂn+2 - Oy Ay n>0.

a,=a, B,=b, ay=c, p=d,a,=¢,6,="f

Fifth Scheme

Any3 :ﬂn+2 - Qpyg- Oy, N >0

ﬂn+3 =02 'ﬁn+l 'ﬂn , N > 0.
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ag=a, fy=b, ay=c, f=d,a,=¢,p,=f

Sixth Scheme an+3 :an+2 ' ﬂn+l' an y N 20
ﬂn+3 :ﬂn+2 - O 'ﬂn , n20.

ao:a, ﬂO:b’ 0{1=C, ﬂl:d!a2:e’ﬂ2: f
Seventh Scheme [ :ﬂn+2 . Oy ﬁn , h>0
ﬂn+3 :an+2 'ﬁn+l 'an ! nZO'
a,=4a, fy=b, oy =c, p=d,a,=e,5,="1
Eight Scheme Briz=Pris - Bryy -0, , N20
Ani3 = Apip - Ay 'ﬂn , N20.
2. Multiplicative Coupled Fibonacci a,=po=qa,=ra,=S

Sequences of Forth Order :

By =t By=u B, =V By=w

We consider two infinite sequences  Third Scheme «, ., =a,,..a,,,&,.,5,, N=0

{ai }zo and { B }z , Which have given eight Boa =B..3Bo B, N0
initial values p,q,r.s,t,u,v, and w (which are (2.3)
real numbers). The sixteen different multipli-
cative schemes for multiplicative coupled ay=p oy=q a, =r o =$
Fibonacci sequences are as follows:

& By =t By=u B,=V By=w

Fourth Scheme
=P oy=q a,=ro;=3

an+4 = an+3an+2ﬁn+lan ’ nz 0

ﬂo =t ﬂ1=U ﬂz =V ﬂg =W ﬁn+4:ﬁn+3 201 Pn n>0

First Scheme (2.1)
n+4=ﬂn+3 n+2/-n+1/~n? nZO

ﬂn+4 = an+3an+2an+1an' nz O

(2.4)

G=Ppoy=qa,=ro;=sS

oy=pay=qa,=ra,=s By =t fi=u B,=v fy=w
By =t Bi=u B, =v f=w Fifth Scheme Cpa =0 30000 1O n=0
Second Scheme _ (2.2)
= , >0 =
Fnia = Oniani2Fnia o ﬁn+4 _ﬁn+3an+2 n+1/~n? n=0

ﬂn+4 = ﬂn+3ﬂn+2ﬂn+lﬂn’ nz O

(2.5)
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G=pog=qa,=ra;=;s
B =t B=up,=v =w
Qg = a0 010, N20
Boa =30,008,.8,, n=0

(2.6)

Sixth Scheme

o =poy=Qqa,=ro;=S

By =t Bi=u B,=v B;=w

Seventh Scheme
Uiy = an+3an+2ﬂn+1ﬁnv n=0
ﬁn+4 = ﬁn+3 n+2an+1an' nz 0

(2.7)

o =poy=qa,=ra;=s
By =t B =u B,=v B=w
Uy =320 By N20
Boa = Bra@2Brayy N20

(2.8)

Eight Scheme

o =P a=qa,=raoa;=S
By =t By=u B,=v fy=w
Qs = P20, N20
Brs = 0y3Bro Brnty, 120

(2.9)

Nineth Scheme

=P aq=Q &,=rog=s
B =t f=u B,=v B=w
Tenth Scheme ,Bn+4 o a0 150
g =BraBraPrunt,, N20

(2.10)
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=P og=Qqa,=ra;==
By =t f=u p,=v py=w

Eleventh Scheme o —¢ .8 .8 .5, n>0
Boia =Bz, N=0
(2.11)

=P oy=qa,=ra;==s
B, =t Bi=u B,=V B, =W
U4 = BrisCni2BriaBry N20
ﬂn+4 = an+3ﬂn+2an+1an’ nz O

(2.12)

Twelfth Scheme

agQp=poy=qQa,=ra;==
. By =t B=upB,=V =W
Thirteenth Scheme B

n+d = an+3an+2 n+1ﬁn1 nz 0

Qg = BrisBialna®yy N20

(2.13)
=P ay=qa,=ro,=5
By =t Bi=u fB,=v f=w
Uiy = O3 Pri2PraBry N20
Boia = Bria 0@y @yy N20

(2.14)

Fourteenth Scheme

a,=p o4 =0 a,=r a; =S
ﬁo =t ﬁl:u ﬁz =V ﬁS =W
ﬁn+4 :ﬁn+3 n+2M~n+1/-n1 n>0

an+4 = an+3an+2an+lan y N 2 O

(2.15)

Fifteenth Scheme

ao:p a]_:q O£2=r063=S

Sixteenth Sch Bo =t fi=u By =v B;=w
1Xteen cheme

an+4 :ﬂn+3an+2ﬂn+1ﬂn1 n=0

ﬂn+4 = an+3ﬂn+2an+1an ] n= 0

(2.16)
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n on B

0 p t

1 q u

2 r Y

3 S w

4 tuvw pars

5 parsuvw grstuvw

6 pg°ristuviw? pgris’tu’viw?
7 p2q3r4s4t2u3v3w4 p2q3r384t2U3V4W4
8 p4q6r788t4U6V7W7 p4q6r7s7t4u6v7w8
9 p7qllrlSSl4t8ulZVl4W15 p8q12r14815t7u11V13W14

3. Some Properties of First Schemes and
Results:

Theorem 3.1: For every integer n> 0,

Boa,.s =ayP.s

Proof : To prove this, we used
mathematical induction method.

If n=0, then B,.0tc = B,y.B.55.5,.5,(By 2.1))
= fo.az.a,.0,.04.3;.5, 5
=0,3.0,.0,.0,.5.5,5.-5
= 0,.00,.04.0,.0, (By 2.1))
=Q,.Q,.05.0,.0,

=oy.Ps

Thus the result is true for N = 0. Let
us assume that the result is true for some

integer N > 1, then

Bo s = Bo-(Bris-Bria-Briz-Priz)
= Bo-(Unia O30 Ci1) Bria-Bris-Brsa
= (Bo-0p1) g O3 Qoo Bria-Bris - Brsz
= (o-Bri1)Ania Qpis Oz -Bria-Briz-Brsz
= 0g-Prian.s Onis- Oz -Bris-Bris-B
=0y Bra-Buiz-BriaBra@nia Oz Oy

T 0O 5- Uy A3 Uyyyp

= Bos

Hence the result is true for all integer
n=0.

Theorem 3.2: For every integer N >0,

:Blan+6 = al:BnJrG
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Proof. To prove this, we use mathematical
induction method.

If n =0, then Sag = B,BsSu B35

= BiBi BB (ayc50,)
= (Bia)) 030, B, B B
= (1) a,030, B, B B
=, B, P ooz,
=o,00,0,0,
=a,fs

Thus the result is true for N = 0. Let

us assume that the result is true for some
integer n >1, then

ﬂla M7= ﬂlﬂn+6ﬂn+5ﬂn+4ﬂn+3
= ﬂl (Ol n+5an+4an+3an+2 )ﬂn+5ﬂn+4ﬁn+3

= (ﬁlam-z )(an+5an+4an+3 )ﬁn+5ﬁn+4ﬁn+3
= (alﬂ n+2 )(a n5&nialn3 )ﬂ n:5BnsaBaiat?

= alﬂn+5ﬂn+4 ﬂn+3ﬂn+2an+5an+4an+3
= alan+6an+5an+4an+3

=, f,,

Theorem 3.3: For every integer N >0,

IBZ 'an+7 = aZIBnH

Proof. To prove this, we use mathe-
matical induction method.

If n=0then f,.a; =P0,.BsPsPulbs
=B, (as0,050,) Bs B B
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=(Bo0rz)ats040t3B5 B B
=(a, ;) a0, s B By
=0, (Bs B s By )stset
=(asasa,05)a,

= B,

Thus the result is true for N = 0. Let
us assume that the result is true for some
integer n > 1, then

Brng = Bo(BriiBrisBrisBaia)
= By (Qp.6@n5%014%013) Bris Bris Bosa
= (B 0.3 ) (@600 5%0.4) B Bris Prsa
= (0, Br3) (60500 1) s BrisBosa

= O‘z 'ﬂn+6ﬂn+5ﬂn+4ﬂn+3 (OC n+6an+5an+4 )

= O‘z a n+7an+6an+5an+4

= O‘z 'ﬂn+7

Hence the result is true for all integer n > 1.
Theorem 3.4: For every integern >0,

Bsa,.g =a3B.4

Proof: To prove this, we use mathe-
matical induction method.

If N =0, then B;.a5 = B5.5.P:P:5.
= Ps-(as0ts04013) Be s B
= (Bsasasa,) Be s Bacts
= (@60t504) Bs B Ba Bt
= Qs 0,0ty

= B0
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Thus the result is true for n = 0. Let
us assume that the result is true for some

integer n > 1, then

Bs0yig = PB3-Br.sPrir BrioBris
= B3 7 6500 1) Briz Brss Brss
= (Bs@n.a) (0 700.6Q015) Briz Brio Boss
= (t3B.0)-(07 01 6015) Brir Brio Bois
= 03 B1.7 B Bris Prraln.10n.6@nis

= aSan+8an+7an+6an+5

= Brio®s
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