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Abstract

Of interest in this theory is the question of determining the
circular chromatic number of product graphs. There are four kinds of
graph products: (i) Cartesian Product (G � H), (ii) Direct Product (G × H),
(iii) Lexicographic Product (G . H) and (iv) Strong product (G � H).

Introduction

Star chromatic number *(G) was
first introduced by Vince [V] in 1988 as a
generalization of the chromatic number (G).
Bondy and Hell [BH], in 1990 modified it
slightly and defined it as the infimum of certain
rational numbers k/d such that G admits what
is called a (k, d)-coloring. We present precise
definitions in the first chapter. In 1992, Zhu7

[Z1] took a different view point and defined a
circular coloring and circular chromatic number
c(G). He also showed that it was equal to
the star chromatic number.

The star chromatic number is at least
2. For each rational number r bigger than 2, a
graph of star chromatic number r can be
constructed. For any rational number r between
2 and 4, there is a planar graph with star
chromatic number r.

The theory of circular chromatic
number has developed rapidly. Yet, some of the

straight forward and early questions are still
intriguing. Vince proved in his original paper
that the star chromatic number must be bigger
than  - 1 and can be at most. One of the
questions he asked in this paper was: Which
graphs have the same star chromatic number
and chromatic number. But there are no known
necessary and sufficient conditions yet, for a
graph G to satisfy the property *(G) = (G).
Guichard [Gu] has proved that if the chromatic
number  is not known, then it is NP-hard to
determine whether or not *(G) = (G).
Certain special classes such as graphs with
superedges, wheel graphs, Mycielskian of
some graphs and some Kneser graphs have
the same circular chromatic number as
chromatic number.

1. The Direct Product :

Definition 1.1.: The vertex set of the
direct product G x H of two graphs is v(G) x
v(H). Two vertices (u1 u2), (v1 v2) are adjacent
when u1 , v1 Є  E (G) and u2 , v2 Є  E (H)

Ultra Scientist Vol. 26(2)A, 115-118 (2014). ISSN 2231-3478 (Print)
www.ultrascientist.org 2319-8052 (Online)



116 R. Ganapathy  Raman

Other names for the direct product are
tensor product, categorical product, Knonecker
product, cardinal product, relational product,
conjunction, weak direct product or just
product.

Example 1.2. K2x K2 is the disjoint
union of two edges.

Observation 1.3 E(G x H) = E(G x
H) U E(G x H)

Properties 1.4 :

1. Commutative : Follows from symmetry of
G and H

2. Associative:  Proved as in previous cases.
Here two vertices u and v are adjacent in
a product of three factors if and only if all
three projections  into  the factors consists
of two distinct vertices that are adjacent in
the respective factor1,2.

3. No unit: The direct product does not have
a unit. Direct product does not have a unit
in Ѓ  (simple graphs). If we extend the direct
product to  To (multiple  edges  and  loops
allowed)by letting two verticies (u,v),
(x,y) be adjacent in G x H when ux Є  E(G)
and vy Є  E(H) no matter whether u,x,v, y
are distinct or not, then the graph consisting
of a single  vertex with a loop is a unit. As
in Ѓ , it is commutative, associative and
distributive with respect to disjoint union.

4. Projections: pi G1 x….x Gk  Gi is a homo-
morphism, not just weak homomorphism.

5. Gi - layers are totally disconnected graphs
on |G:| vertices.

Lemma 1.5 : Let (a,x), (b,y) be
vertices of G x H and P a walk in G connecting

a with b. Furthermore let Q be a walk from x
to y in H and suppose that |E(P)| + |E(Q)| is
even. Then there exists a path G x H from
(a,x) to (b,y).

Proof: let P= ao a1….an where ao = a,
an=b and let Q = x0x1 ….xn where xo=x and
xm=y. We may, without loss of generality
assume that n<=m. Then (aoxo) (a1,x1)
…(anxn) (an-1,xn+1)…(an,xm) is a walk from
(a,x) to (b,y) Thus, there also exists a path
between these vertices.

Theorem 1.6:

Let G and H be graphs with at least
one edge. Then G x H is connected if and
only if both G and H are connected and at
least one of them is nonbipartite, Furthermore,
if both G and H are connected and bipartite,
then G x H has exactly two connected
components3-5.

Proof: Let G x H be connected. Then
both G and H are connected. We wish to show
that at least one of the factors G and contains
an odd cycle. Let xy be an arbitrary edge of H
and let a be a vertex of G. Since G x H is
connected, there exists a path p between
(a, X) & (a,y) say p=(aoxo) (a1,x1)….(anxn)=(a,y)
for i =0,1,…n consider the pairs πo =  (dG(aoai),
dH(xi,xn)). Clearly πo = (0,1) and πn = (0,0).
Note first that an entry of πi differs by at most
one from the corresponding entry in π i-1.

Furthermore, for at least one pair only one entry
is changed; otherwise, the parities of πo and πn

would be the same. without loss of generality,
we may assume that for some i, dH (xi-1,xn) =
dH(xi,xn) not equal to 0. Clearly, xi-1,xn, xi
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Є E(H). But then H contains a closed walk of
odd length and thus an odd cycle.

Conversely, assume that G and H are
connected and the G contains an odd cycle.
Consider arbitrary vertices (a,x) and (b,y) of
G xH, let P be a path in G from a to b and Q
be a path in H from x to y. If |E(P)| + |E(Q)| is
even then (a,x) and (b,y) are connected by a path
by previous lemma. Thus let |E(P)| +|E(Q)| be
odd. We construct a walk P and G connecting
a with b as follows. First proceed from a to an

odd cycle of G, traverse the cycle, return back
to a and continue along P. Clearly, the parity
of P is different from the parity of P. Hence
|E(P)| + |E(Q)| is even and we can again apply
previous lemma6,8,9.

To conclude the proof, let G and H be
connected bipartite graphs. Let xy be an edge
of H and let a be a vertex of G. By the above,
we already know that G x H is disconnected.
As before, we can show that an arbitrary vertex
(c,z) of G x H is connected by a path to either
(a,x) or (a,y). Thus GxH has at least two
components. Since it is disconnected, it has
exactly two.

Definition 1.7.

The Lexicographic product GoH of
two graphs G and H is defined
V(GoH) =v(G)*V(H),two vertices(u,x) and
(u,y) of GoH being adjacent whenever
uvE(G) or u=v and xyE(H). It is also known
as composition or substitution.

         The Lexicographic product GoH can be
obtained  from G by substituting a copy of Hv
of H for every vertex v of G and by joining all
vertices of Hv with all vertices of Hu if uvE(G)

Theorem 1.8 : For any graph G, we
have f(G)  c (G)  (G).

Proof: Let f(G) = d
k

and let c be a

(k1d) – coloring of G. For i-0, 1, …, k-1 let Ii

be the set of vertices of G colored with colors
{I, i+1, …., i+d-1} (colors are computed mod k).
Then for any I the set Ii is an independent set
of G.

Define a mapping   f : s [0,1] by f

(Ii) = d
1
 for i=0, 1, …, k-1 and f(D) = 0 for any

other independent set D in S. Then f is  fractional

coloring of G and the weight of f is 
 

d
k

.

Therefore f(G)  
 

d
k
 = c(G).

Theorem 1.9: For any graphs G and
H, we have c(G.H)  c(G) (H).

Proof: Let c(G) = 
 

d
k

 and fG be a

(k, d) – coloring of G. Moreover, let (H) = n,
and fH be an n-coloring of H. For a vertex
(a, x)  V(G.H) set f(a,x) = fG(a) + kfH(x).
Then f is a mapping v(G.H){0, 1, …., kn-1)
and it is easy to see that f is a (kn,d) – coloring

of G.H. Therefore c(G.H)
 

d
kn

=c(G) (H).

Conclusion

We have given a very few theorems
on circular chromatic number of Direct
Products and lexicographic products. Feature



work can also be done on circular chromatic
number of other products.
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