
Program Slicing for Composite Data using
Finite State Machine

K. THIAGARAJAN1, J.KAVITHA2 and PONNAMMAL NATARAJAN3

 1Professor, Department of Mathematics in SBM College of Engineering and Technology,
Dindigul, Tamil Nadu (INDIA)

email : vidhyamannan@yahoo.com
 2Department of Mathematics in SBM College of Engineering and Technology,

Dindigul, Tamil Nadu (INDIA)
Email: manokavi.j@gmail.com

 3R&D, Advisor in Rajalakshmi Engineering College, Affiliated to
Anna University Chennai, Tamil Nadu (INDIA)

(Acceptance Date 9th June, 2014)

Abstract

In the software development life cycle, the identification of
errors/bugs plays an important role, as the end product should be bug
free. This can be achieved through the concept of program slicing.
Generally, program slice has a wider spectrum of applications that include
debugging, testing, maintenance, code understanding, complexity
measurement, security etc., There are two different categories of program
slicing namely, static slicing and dynamic slicing which can be identified
using connected graph and its structural arrangements. Existing slicing
techniques were implemented over intra procedural non composite data
[only which doesn’t include arrays, structure, union etc,]. In the proposed
work static program slicing concepts is applied over array of elements
using finite state machine (FSM) method. Here, backward slicing
techniques are applied to get quality output.

Key words: Slicing, Slice, Program Dependence Graph, Finite
automata, Finite State Machine.

I. Introduction

Program slicing1 is a program analysis
technique that reduces a program to those
statements that are relevant for a particular

context or computation. Alternatively it is a
technology that decomposes a program and
extracts the portion of interest with respect to
certain criterion that reduces the complexity
of control flow. There are two types of slicing

Ultra Scientist Vol. 26(2)A, 123-130 (2014). ISSN 2231-3478 (Print)
www.ultrascientist.org 2319-8052 (Online)

124 K. Thiagarajan, et al.

namely static and dynamic slicing.

A. Static slicing :

Static program slice comprises of
those program statements that affect the value
of a variable at some program point of interest
which is referred as slicing criterion. It is otherwise
known as a static algorithm only uses statically
available information that does not care about
the path of execution in the program. Here all
possible executions of the program are taken
into account. A static slice preserves a projection
of the semantics of the original program for
all possible inputs2,3.

B. Dynamic slicing :

A dynamic slice5,6 consists of only those
statements that actually affect the value of a
variable at a program point for a given execution.
It computes those statements which influence
the value of a variable occurrence for a specific
program. It requires the path to be same in
the original program and in the slice. A dynamic
slice is constructed with respect to only one
execution of the program (iteration number is
taken into account). A dynamic slice preserves
the effect of the program for a fixed input.
Dynamic slicing requires the path to be same
in the original program and in the slice8.

C. Concept of slice :

 A slice is constituted by the statements
that affect the value of the program with
respect to the given variable occurrence. The
various statements are statements using
variables, expressions and assignments and
control flow statements. It is an executable
portion of the original program whose behavior

is, under the same input, indistinguishable from
that of the original program on a given variable
‘V’ at point ‘P’ in the program. Weiser defines
a program slice with respect to slicing criterion
that consists of program point ‘s’ and a subset of
program variables ‘v’ is now called executable
backward static slice. Executable means the
slice is required to be an executable program,
backward means the direction edges are
traversed when a slice is computed using a
directed graph and static means they are
computed as the solution to a static analysis
problem (i.e. , without considering the
program’s input).

D. Computation of program slice :

(i) An iterative algorithm, computes the
slice as set of data-flow equations

(ii) Representing the program as a
graph, where vertices represent expressions
and edges represent different types of inter-
dependencies is also used to compute the slice
as a simple graph reachability problem. This
include identification of all basic components
and analysis of all kinds of dependence
relationships between these components in
object-oriented programs, construction of
Object Oriented Program Dependence Graph
(OPDG), slice program dependence graph
based on graph reachability slicing algorithms
and get sliced program by projecting sliced
program dependence graph to source program.

A forward7 slice cosists of all program
statements that are affected by a given point
in the program whereas a backward slice
consists of all program statements that affect
a given point in the program9.

Program Slicing for Composite Data using Finite State Machine. 125

E. Interprocedural Slicing :

(i) Slicing across procedures complicates
the situation due to the necessity of translating
and passing the criteria into and out of calling
and called procedures. When a procedure ’P’
calls a procedure ’Q’ at statement ’I’, the
active criteria must first be translated into the
context of ’Q’ and then reversed once ’Q’ has
been sliced. Summary edges represent the
transitive dependences due to procedure calls.
Slices are computed by doing a two phase
traversing on the System Dependence Graph.
Here the main problem is the effective
computation of summary edges11.

F. Intra procedural Slicing :

In a program P, the slicing criterion is
derived and the slicing is done inside the
procedures located in ’P’. The slicing criterion
is fully depend on the Program ’P’ itself 10.

G. Static Backward Slicing :

A normal (static backward) slice of a
program is defined using a set of variable
identifiers (V) and a point in the program or
line number (i). For example, the slicing
criterion ({a, b}, 30) will result in a slice which
only has code that affects the variables a and
b up to line 30 in the program.

H. Conditioned Slicing :

Conditioned Slicing bridges the gap
between static and dynamic slicing. Conditioned
Slicing is relevant to a set of initial states rather
than just one, as is the case with dynamic
slicing. A conditioned slice can therefore act
as a typical dynamic slice if just one initial state

is specified. At the other end of the scale, a
conditioned slice can act as a static slice if all
possible initial states are specified11.

I. Amorphous Slicing :

Amorphous slicing involves applying
changes to the code syntax while preserving
the semantics (meaning). This approach can
help in understanding certain aspects of the
code.

J. Forward Slicing :

In backward slicing, lines of code that
do not affect the slicing criterion are removed.
With forward slicing, lines that are not
AFFECTED by the slicing criterion are
removed. It looks forward in the code, relative
to the line number specified in the criterion,
instead of backwards5.

K. Finite state machine :

A finite state machine (FSM) or finite
state automaton or simply a state machine, is
a model of behavior composed of a finite
number of states, transitions between those
states, and actions. A finite state machine is
an abstract model of a machine with a primitive
internal memory.

Outline of Paper :

Section 1 presents the overview of the
static slicing concepts, its types and techniques
Section 2 presents architectural design and
flow diagram of the proposed system. Section
3 presents the algorithm for static slicing of
array of elements. Section 4 presents program
dependency graph. Section 5 presents

preliminaries on finite State machine. Finally,
Section 6 presents conclusions and future
work.

II. Architecture of the Proposed System

Fig. 1 Architectural Design of the proposed
System

The block diagram describes the
function performed by all aspects. Here the
block diagram is divided into four sections
namely, input section, validation section,
processing section and output section. Input
section reads actual array size, array element
and current array size. For example, the actual
array size is 10, array element also 10 and
current array size is n=5. In validation section,
all the input values which is read in input section
are checked. If any discrepancies occur then
make a correction. In processing section, if
the input is valid, then calculation is done
directly to get the exact result. Otherwise,
calculation is done after updating the input.
Finally, Output section displays the result (it
may be correct or incorrect with respect to
current array size).

This architecture diagram describes
the overall flow of this paper. Initially, array
size (n) and m number of array elements are
read from the user. Then preprocessing such
as smoothing is done on all these inputs. Then
the inputs are validated to check whether the

Input Validation Processin Output
section section g section section

  

Fig. 2 Flow Diagram of the
Proposed System

input is suitable for processing. Finally, the
inputs are processed based on the size of the
array and the number of array elements given
as an input. If n = m, then it produces correct
output, otherwise a correction is made based
on the input. If n<m then, the input values of
array elements are updated and then
processing is done to get the correct output. If
n>m then it implies an over estimate, i.e., the
array size is greater than actual array size.
Therefore, array size is updated until it is equal
to number of array elements given as an
input10.

126 K. Thiagarajan, et al.

III. Algorithm

Input: Array of n elements

Output: static slicing of array elements

Other Variable: total, average

for each EX in the array
{
if (EX=AS)
{
calculate total; calculate average;
}
else if (EX<AS)
{
calculate erroneous result // but the total and
average is incorrect
}
else // (EX>AS)
make the necessary updation;
}

IV. Program Dependence Graph

A program dependence graph is a
suitable internal program representation for
monolithic programs, for the purpose of
carrying out certain software engineering
operations such as slicing and computation of
program metrics.

Original Program:

1. #include<stdio.h>
2. int main()
3. {
4. int n,i,tot;
5. float avg;
6. int a[]={10,20,30,40,50,60,70,80,90,100};

7. printf(“enter the value of n”);
8. scanf("%d",&n);
9. tot=0;
10.for(i=1;i<=n;i++)
11. tot=tot+a[i];
12.avg=tot/n;
13.printf("%d\n%f ",tot,avg);
14.}

Static Slicing Criterion
Slicing criterion: (a[],n)

Which statements have a direct or
indirect effect on variable n.

Static slice with respect to (a[10],n)

4. int n,i,tot;
5. float avg;
6. int a[]={10,20,30,40,50,60,70,80,90,100};
7. tot=0;
8. for(i=1;i<=n;i++)
9. tot=tot+a[i];
10.avg=tot/n;
11. printf(“%d\n%f”,tot,avg);

Nomenclature
EX is an element index
AS is a array size

Fig. 3. Program dependency graph

Program Slicing for Composite Data using Finite State Machine. 127

Where
• R1= [n=m]
• R2= [n<m]
• R3= [n>m]

V. Finite State Machine Priliminaries

 Slicing methodology may be expressed
as the finite state machine (finite automaton),
however it can be shown that both NFA and
DFA have the same capacity. The following
describes the definition various basic finite
automata definitions. Finite automata recognize
regular languages only. It receives as a string
usually from an input tape. It delivers no output
at all except an indication of whether the input
is acceptable or not.

Finite state machine

A finite state machine (finite automata)
is a mathematical model of how12-13 computer
functions while running a program. It consists
of finite set of states and a set of transitions
from state to state that occurs on input symbols
from alphabet “. There are two types of finite
automata namely Deterministic Finite
Automata (DFA), Non Deterministic Finite
Automata (NFA).

Fig. 4 FSM: recognizing a string “slicing”

A string x is said to be accepted by DFA
or NFA M=(Q,  q0,F), if  (q0, x) = P for
some P in F. let us take an example of finite
automata Q={qo,q1}, ={0,1},F={qo}, is a
transition function. The transition table is
follows.

Table I
Input Transition Table
 Input Symbol

State
0 1

qo {qo,q2} {q1}

q1 {qo} {qo,q1}

The equivalent Finite state machine model is
as follows

Fig. 5. Finite state machine model for table 1

Static slicing through DFA

Generally, we specify the slicing
concepts in the following way.

Fig. 6. DFA of Static Slicing

128 K. Thiagarajan, et al.

Where i=1, 2…
Example:

 M= (Q, , , q0 , F)

 Q= {q0, q1, q2} ={0,1}

Table II
Input Transition Table

 Input Symbol
State

0 1
q0 {q1,q2} {q0}
q1 {q1} {qo}
q2 {q2} {q1}

Fig. 7. Finite state machine model
for table 2.

Transition Function

 (q0, 1) = {q0}

 (q0, 0) = {q3}

 (q1, 1) = {q1}

 (q1, 0) = {q0}

 (q2, 1) = {q2}
 (q2, 1) = {q1}

VI. Conclusion And Future Work :

Existing system have expressed the
slicing concepts in the form of flow diagram.
In the proposed system automaton explanations
for approaching static and dynamic slicing
have been suggested. Finite State Machine
(FSM) gives full model of static program
slicing, which accepts possible state (1) and
declines impossible state (0). This paper the
slicing techniques, were implemented over
intra procedural composite data type array.
Future enhancement would be to implement
composite data such as structure, union etc,
with the help of different mathematical
techniques via automata theory11-13.

References

1. Tracy Hall and Paul Wernick, “Program
Slicing Metrics and Evolvability: an Initial
Study”, Proceedings of the 2005 IEEE
International Workshop on Software
Evolvability (Software-Evolvability’05)
0-7695-2460-5/05,2005.

2. Heng Lu, Heng Lu, T.H. Tse, “Static
Slicing for Pervasive Programs”,
Proceedings of the Sixth International
Conference on Quality Software (QSIC’06)
0-7695-2718-3/06, 2006.

3. Kai Pan, Sunghun Kim, E. James
Whitehead, Jr, “Bug Classification Using
Program Slicing Metrics”, Proceedings of
the Sixth IEEE International Workshop on

Program Slicing for Composite Data using Finite State Machine. 129

Source Code Analysis and Manipulation
(SCAM’06) 0-7695-2353-6/06,2006.

4. David Binkley Nicolas Gold, Mark Harman,
Zheng Li and Kiarash Mahdavi, “An
Empirical Study of Executable Concept
Slice Size”, Proceedings of the 13th
Working Conference on Reverse
Engineering (WCRE’06) 0-7695-2719-1/
06,2006.

5. A ́rpa´d Besze´des, Tama´s Gergely and
Tibor Gyimo t́hy, “Graph-Less Dynamic
Dependence-Based Dynamic Slicing
Algorithms”, Proceedings of the Sixth
IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM’06)
0-7695-2353-6/06, 2006.

6. Yancheng Wang, Bixin Li, Xufang Gong,
“An Extension to Robustness Slicing
Algorithm Based on Dynamic Array”,
Proceedings of the Seventh ACIS
International Conference on Software
Engineering,Artificial Intelligence,
Networking, and Parallel/Distributed
Computing (SNPD’06) 0-7695-2611-X/

06,2006.
7. Deji Fatiregun Mark Harman Robert M.

Hierons, “Search–based amorphous
slicing”, Proceedings of the 12th Working
Conference on Reverse Engineering

8. (WCRE’05)
9. Prof. J. T.Lallchandani Dr. Rajib Mall,

“Computation of dynamic slices for
object-oriented concurrent programs”,
Proceedings of the 12th Asia-Pacific
Software Engineering Conference
(APSEC’05)

10. Hai Huan Wei-Tek Tsai Raymond Paul,
“Proof Slicing with Application to Model
Checking Web Services”, Proceedings of
the Eighth IEEE International

11. Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC’05)

12. Weiser M, “Program slicing”, Proc. ICSE
1981, San Diego, California, Mar. 9–12
1981, pp.439– 449.

13. Bernard M.Moret, The Theory of Com-
putation, Perarson education,First Indian
reprint, (2002).

130 Ultra Scientist Vol. 26(2)A, (2014).

