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Abstract

The object of the present note is to extend the theorems of
Sachan (E,q) (C,1) summability, qy0 of derived Fourier series.

Key words : Cesaro Summability : (y, r) summability, (y, r) (C, 1)

summability.

1. Definition & Notation

Let the Fourier series associated with
the function f (x) which s integrable in lebesgue
sense over (—z,7) and periodic with the

period 2, be

(1.1)Zf:Aq(x):%ao+Zw:(ancosnx+bnsinnx)

n=1

The derived Fourier series of (1.1) is
(1.2) D nB,(x)=>_n(b,cosnx—a, sinnx)
n=1 n=1

An infinite series Y u, with the

partial sums S, is said to be summable (y, r)
(C,Dtos,if

i(ﬁ,n) "G (0<r <1) —>Sas n—o.

v=n

Where o, stands for the (C,1) transform

of S,.
We Shall use for fixed x and s, The

following notations:

A = apositive constant, not necessarily the

same at each occurrence
pt)=f(x+t)+ f(x—-t)-2s
f(x+t)— f(x-t)
4sint/2

g(t)=

p(r,t)=1+r?—-2rcost

q(r,t):tanl{ rsint }
1-rcost

Introduction

In 1960 Ishiguro®, in 1962 Lorch and

Newmann* and in 1965 Forbes! studied
asymptotic behaviour of Lebesgue constants
for the Taylor Summability of Fourier Series.
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It is known that the Taylor summability,
which is also called the circle or (y,r) summation
is regular for O<r<1 and it is equivalent to
ordinary convergence for r=0, Hardy? (p 218).

Studying the product summability of
the derived Fourier series, Sachan® has proved
the following theorems for (E,q) (C,1)
summability of the derived Fourier series.

Theorem A ; If

L

(2.1) G®) =] |g(u)|du :O[mgut

then

> nB,(5)=0[ (E.a)(C.1)](a>0)

n=1

j,ast—>0

Theorem B : If

(22) G(t) = |a(u)]du =0(t), as t >0

and

" \g(t)—g(:wz/m)\ exp{_ r;qtz

@3) [l a0

as n — oo, where n is a positive constant and

n+q+1 =
m_ﬁ, then nzﬂln B,(x=0[(E.q)(C.1)] (a>0)
So, it is natural to expect the extension of
Theorems A and B to the product summability
(%), (C,1) of the derived Fourier series under
the analogous conditions. With this point of
view, we prove here.

Theorem 1:

If (2.1) holds, then the derived Fourier
series (1.2) is summable (y,r), (C,1) to zero at
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the point x.

Theorem 2:
If (2.2) holds and

(2.4) J-,; g(t)—gt+z/m)|

zlm t

exp (—Antz)dt =o0(1)

as n —oo, for some fixed positive number

<7 m—ﬂ and A—L th
T (L+r)a? o
the derived Fourier series (1.2) is summable
(1) (C,1) to zero at the point x.

3. Preliminary Estimates and Relations:

rsint

rt)=tant———
CORID) 1-rcost

rt
= —+0 t3
1-r )

Where t is positive and small.
(32) g(n,t) = O(n? 1), forO<t<z/n
O(n), forO<t<z/n
O@r/t), fort>n/n

2r
(1-r)’r?

(3.3)

For 0<t<z and A= >0

L-r)’
T

(3.5) cos{(n +1)(t+q(r,t)}—cos{

(3.4) = O{exp (—Antz)}

N+ +r
1-r

}t:O(nts)

forsmall t>7z / m.

(3.6) for mz?, finite tand 0<1<1

—(n+1)12

{ p(r,t)}f('”l)/2 —{p(r,t+x/m)}
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_ (n+Yzr@—r)sin(t+1z /m)

(n+3)/2
(n+ r){ p(r,t+lﬂj}
m

Proof of (3.1) :
By Maclaurin’s Theorem, we have

rsint
rt) =tan!| —————
q(r.b) (1—rcostj

_ortor@-nt
T1-r (1-r)*3!
rt
=-——B@M)t
1-r ®

Where B(t) is a bounded positive power
function of t with
rl—r) 1
<
6(l-r)® 3@1-r)°

0<B(t)<

The estimates of (3.2) can be easily
be obtained by expanding sine and cosine in
power of n and t, and (3.3) simply by

maximising sin nt and cos nt

Proof of (3.4) :
This estimate is due to Forbes® partially

for 0<t < /2, however the same is due to
Sachan® completely for <t <

Proof of (3.5) :

For t > 7z / m, using the relation (3.1)
and expanding cosine and sine, we find

(n+1+r)}t

cos{((n+1)(t+q(r.t))} —cos{
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:cos{(n+1){t +r—t— B(t).tE’H—cos{nJrlJr r}t
1-r 1-r
_cos{(n Jrl){l_r B(t).t H cos{ -

= 0O(nt%)

>
+
H
+
=
%/_J
—

Proof of (3.6) :

Since {p(r.t) =(L+r?-2rcost) "'
is continuous and differentiable in any finite
interval of t, we have, by the mean value
Theorem of differential calculus®.

}7(n+1)l2

_ {p(l’,t+7r / m)}*(nu)/z _{ p(r’t)}f(nu)/z

t+ 7 —t
m

_d
dt

= ——{ (r.0)} ™9 o1 sin g

n | —(n+3)/2 |
:——{p[r,tJr—ﬂj} 2rsin(t+—”)
2 m m

consequently,

{p(r.0)}

—{p(r,0)} (””)IZWheree:H%, 0<l<1)

—(n+1)/2 —(n+1)/2

—{p(r,it+z/m)}

(n+3)

—r(n+1){p[r,t+ ﬂ sm(H%j
= zr(n+ - r){p[ }_(Mwsm[nlr:j
zr(l— r)sm(t j

(n+1)
= where Q<] <1

Lz (n+3)/2
(et )
m
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4. Preliminary Lemmas : Proof:
Lemma 1.

If g(t) be integrable (L) and ¢ is any The n™ partial sum S, of the derived
positive real number less than” (Titchmarsh,  Fourier series (1.2) may be written as

E.C.) then the (C,1) transform o, of the n"

partial sum S, of the derived Fourier series in S :_lj‘” t i{sin(n +1/ Z)t}dt
given by dt [ 2sint/2
=3f {2{1—cos(n +1t} sin(n +l)t}dt+0(l) Denoting (C,1) transform of Sp+1 by oy,
(n+1)t? t

1 d [sin(k+1/2)t
on - (n+l)ﬂI0 {Z;‘d{ 2sint/2 Hdt

= ” i ———— {coskt—cos(k +1)t} |dt
(n+1)7z d 4sin’t/2 &
_ 1(1 COS(nJrl)tJdt
- (n+1)7r dt\ sin?t/2
1 o c052{1 cos(n+1)}t sin(n+ )t
==["q — : at
oo (n+Dsin“t/2 sint/2
COS — {1 cos(n+)}t .
_ L [Jot)| —2—— _sin(n+Dt e o)
T (n+1)sin“t/2 sint/2

as n — oo, since the last interval over (5, 7r) is 0 (1) partly by presence of n in the denominator

and partly by Riemann-Lebesgue Theorem.
It may also be written as

. =£J5 ® 2{1—cos(n+1)}t_sin(n+1)t gt +o(l)

(n+1t?
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Lemma 2 :
If (2.2) holds for t < §, then

{1-cos(n+1)t}
(n+Dt?

[Ta®

Proof:
Integral may be written as

i 8 {1-cos(n+1)t}
.[0 +.[r/n g(t) (n +1)t2 at

dt=0(1)

=1+, say
since fort >0

{1-cos(n+1)t}
2 = O(n)
(n+D)t
We obtain by making use of (2.2)
[I|=0(1) asn-w
Integrating by parts and using (2.2), we get

o = ofg) o )foF o

= o(l), asn—ow
It follows that
1+ 3|<|1]+]3] =0 (@)

Lemma 3 :

. sin (n+l){t—tan‘1( rsint j}
o o SINL D 1-rcost
Z(u—n)r t = )2
v=1

(l+ r2 —2rcost)( t

o sin(o + D)t
t

:% Img i( Z_n ) rL)—r1ei(u+l)t

[
—_—
C‘C
>
S~——"
-
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:% |mg |:ei(n+l)t i ( Z—n ) ru—nei(u—n)t }

v=n

:% Img |:ei(n+l)t (1_ reit )—(n+l):|

sin {(n +1) {t —tan™ (rsmth
1 1-rcost

) +1)/2
t (1+ r2—2rcost)(n )

Lemma 4 :

|fm—ﬂand 1<a<i d (2.2) hold
1t 3 > and (2.2) holds.

then

[sin{(nﬂ)[t—tanl( rint ]]}—sinmt}

a8 e

Wt (1+r2—2rcost)wv2

=0(1)
Proof:

By estimates (3.4, (3.5), condition
(2.2) and integration by parts, we have

L |SJ.WWMO exp (—Ant?) O (nt®)dt

zlm t

= 0(n) I:;m)a|g(t)|.t2dt

m)?

=om[omt: —2jo(t)tdt}:
oMo |
n+r

0(1), as n— oo, since m="T—"

m

Lemma5:

1
If (2.2) holds and 0 < <5 then
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(n+1) (n+1)

(1- r)n+1 .[(”/m)a M{{ p(r,t)} 2 —{p(r+t+z/m)} 2 sin(n+1t dt}

zlm

=0(1)

t

Proof : 5. Proof Of Theorem 1 :
Using the second mean value theorem
and condition (2.2) Following lemma 1 & lemma 2, the
(C,1) transform oy, of partial sum S, of derived
. Fourier series (1.2) may be written as
(zim |g(t+7/ m
- j/ 9 )|O[texp(—Ant2)]dt
Tim

=0 [exp{—An(” / m)za}M

o, =2 [ g N0
(z/m)? 0 t

. \9(””/"‘)‘(“ Denoting the Taylor transform of o, i.e.

= 0(1)[(t+”/m)](r;/m>” Where 0<a < <1 (7:7),(C.1) transformof S, by T . We have

by regularity of the Taylor method of summa-

=0(1), asn—w tion,

—

n

(1-r)"" jj g(t)g(gn)r“" Si”(rl—”)tdt +o(1)

Using Lemma 3 and notations, we have

2
T

T

—E(l—r)”ﬂf g(t) sin[ (n+D){t—q(r,t)} |

sin{(n +1){t—tan1r8intH
_ ——(1—r)”+1j5 g(t) 1-rcost dt+o()

ot (1+r%—2rcost)™H’?

Jdt+o(lL
U (g™

+
z/m

B (f g, P

(z/m)*

t  {p(rt)}(n+1)/2

2 1 1
(61 -= —;[P+Q+R]+0(1) , say where 5 <o <
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We obtain by (2.1) and estimate (3.2)

IZE j;’m|g(t)|0(n)dt
(5.2)=0(1), asn—>w

An integration by parts and application of (2.1)

gives

/m)* t
Q=0 [ wtﬂ.dt

/m

(7/m)*
o(l)HO(t)%}jLO{tIosllt}dt}

o()+o(@)[-loglogl/t] &5m"

zlm

0(1)+0 [Iogi}
a

(5.3)=0(1), as N —> oo since Where 0<a <%

Next, by continuity part of the integral,
We have

S
|R| = J.(n'/m)a

g(t)|exp{—A(n +1)t2}dt

2o o [CTe0_O-r

z/m t { p(r,t)}(nﬂ)/z

IWm)" g() @-n™
zlm t {p(r,t)}(n+1)/2

_I(n/mrtn/m g(t+z/m)

sin mtdt

(1_ r.)n+1

=0 m _ } L" . lg(t)[dt

pas exp{A(n +1) ﬂ2a
m

- o{ m* ]
* exp{ An?}
(5.4)=0(1), as n— oo Where 0<« <%
By virtue of (5.1), (5.2), (5.3) and (5.4)
T"'=0() asn—ow

Hence the proof of theorem 1 is complete
6. Proof of Theorem 2 :

It may be noted that from the proof

of theorem 1, P,R = 0(1) under the hypothesis
(2.2) and (2.4). Applying Lemma 4, we write

sinmtdt+0(2)

sin mtdt

0 (t+z/m) {p(r,t)}(nﬂ)/2

(1_ r.)n+1

sin mtdt

I(n/m)" gt)—g(t+z/m)

zlm t

{ p(r, t)}(n+1)/2
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+J-(n/m>“ g(t+z/m)

zlm

A-r)" [{ p(r,t+xz/ m)}f(m)/2 —{ p(r,t)}f(””m}sin mtdt

(x/m)” 1 1 1-n"
t+z/m)| =— sin mtdt
+L/m g(t+rx )(t t+ﬂ/mj{p(r,t)}(nﬂ)/2

sin mtdt

_In/m g(t+7/m) (1-r)"*
°  tex/m {p(rt+x/m)}

(n+1)/2

sin mtdt

+I(ﬂ/m)" g(t+7/m) @Q-r)
(zIm)* —(z/m) (t + 7T/ m) {p(l’,t + 77,'/ m)}(rHl)/Z

=J,+J,+J,-J,+J., say

By the hypothesis (2.3) and estimate (3.4)

3 O(l)J-(n/m)“ ‘g(t)— g (t+7r/m)‘

z/m t

exp{—Ant’}.dt

o(l), asn-—>w

By (2.2) and (3.6)

sin mt|dt

I(n/m)" glt+z/m) A-n)"Pzr@d-r)sint+z/m)
+3

|J2| z/m t I n+s
2
(n+r) p(r,t+ﬂj
m

o ["™ |g (t+ 7 /m)|dt

1
=0(1), asn—>o  since, aS§
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Integration by parts and (2.2)

|J3| Szj(ﬂ/m)a g(t+7z/m)| it
mez/m  t(t+7/m)

<£Ig/m)a g(t +tzzlm)| it

m

m

o(lj{o(tﬂﬂm) +2.[0(t+t7§/m)dt}

n t?

(D02

0 (1),

zlm

. 1 1
as N — oo since, Eéa <§and

n+r
m=

1-r

By change of variables and (2.2)

zlm

|J4|Sj-2ﬂlm|gti)|dt

m 27/m
of 712t

0(1), asn—w

and

(z/m)

(zimy+xim | g (1)
acfe g 80l g

7]

=0(1), asn—-w

(2r/m)*
J.(ﬂ/m)”’

g(t)|dt

Thus we show that
(5.4)=0(1), asn—>w

Which completes the proof of Theorem 2.
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