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Abstract

In this note, we have obtained some novel results on mixed

trilateral generating relations involving the polynomials, Y2k (x:k) a

modified form ofKonhauser biorthogonal polynomials, Y (x;k) by
group theoretic method. As special cases, we have obtained the
corresponding results on generalized Laguerre polynomials. Some
applications of our results are also discussed.
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L (x) . An explicit expression for the

The polynomial sets { Y (x;k)} and Polynomials, Y (x;k) was given by Carlitz’

{Z¢(x;k) }, discussed by J.D.E. Konhauser*
are biorthogonal with respect to the weight
function x“e™ over the interval (0,00), a>1, k

is a positive integer. For k =1, these polynomials
reduce to the generalized Laguerre polynomials,

in the following form:
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where (a), is the pochhammersymbol defined
by
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_[‘(a+n)_$ 1, ifn=0, a=0,

@n="F~"=
(@) a(a+l)..(a+n-1),vne{l,2,3.]}

In a recent paper’, the present authors
have proved the following theorems on bilateral
generating relations involving the polynomials,

Yok (x;k), a modified form of Konhauser

biorthogonal polynomials, Y (x; k).

Theorem 1: If

G(x,w) = TanY&k (kw" (1.1
n=0

then

(L+a—k) 1 E 1oy k
1=kt) k -X(1+kt)k YGlyx(1+ kt) k ,——
(1=kt) expgx - X(1+kt) X(1+kt) Tk

= Yon (VY& (xk)tn, (1.2)
n=0
where
on(v) = %O:a kn'pFn-'-rkvp
" - p=0 P p+r .
Theorem 2 If
G(x,w) = XanYnir G K)W"  (1.3)
n=0
then

(Lra—k) 1 1
(1=kt) « exp*x -X(1+ kt)k*GEX(H kt)k,vtb

= ﬁocn(x,V)t“, (1.4)

where

© n+r
on(X,V) = zapk“'pp kYn‘i}“'”p" (;KvP.
p=0 p+r
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The object of the present paper is to
generalise the above bilateral generating
relationsinto mixed trilateral generating relations
by the group-theoretic method. As special cases,
we obtain the corresponding results on Laguerre

polynomials, L{* (x). The main results of our
investigation are stated in the form of the
following theorems:

Theorem 3 If

GOx U W) = TanViir™ (k) gn (W', (1.5)

where g,(u) is an arbitrary polynomial of
degree n, then

(L+a—k) 1 E 1 vt ‘s
1=kt) k expdx-x(1+kt)k YGlsx(1+ kt)k, u,
(L=k) px-x(1+ k) JGx(L+ kK, u

=§Ocn(v,u)vn%r“k(x;k)tn, (1.6)

where

uv—nak”'pFrH-rk u)vP
Gn(v)—pz::op p+r gp() .

Theorem 4 If

GO0 W) = T an i (GK)Gn (W, (1.7

where g,(u) is an arbitrary polynomial of
degree then

(1+a—k) 1 1
1=kt) k expdx-x(1+kt)k YGyx(1+kt)k, u,vt

= Ecn(x,u,v)t”,

P, (1.8)

where
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n+r
S (XUV) = ﬁapk”'pﬁ kYn‘i'P“pk(x;k)gp(U)vp-
p=0 p+r

2. Proof of theorem 3 :

At first, we consider the following
linear partial differential operator’:

0 , O
R=xy—-ky " ——(x+k-a-1
yax y Y ( )Y
such that

ROGEP (6 K)Y) = K(n+ T+ DY O k)™,

(2.1)
The extended form of the group generated by
R is given by

1
VR (x,y) = (L+ kwy) 5 exp*x -x(1+ kwy)k*

1
xfﬁx(lww)k,“ykwyé, 2.2)

where f (x,y) is an arbitrary function and w is
an arbitrary constant.

Let us consider the generating relation of the
form:

G(x,u,w) = XanY ™ (x;k)gn (U)W". (2.3)
n=0
Replacingbyin the both sides of (2.3) we have

G(x,u,wvy) = ian(Yn‘l‘r”k(X;k)gn(U)y”)(V\N)”-
"= (2.4)

Operating e"R on both sides of (2.4), we get
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eWRbG(x,u,wvy)g =eWRF fan(Yn‘i‘r”k(X;k)gn(u)y”)(WV)”&-
n=0

(2.5)
Now the left member of (2.5), with the help
of (2.2), reduces to

1
(L+ kwy) “E exp*x -x(1+ kwy)k*

1
GE x(1+ kwy)k'u,l-:,-v:(/ywyé. (2.6)

The right member of (2.5), with the help of
(2.1), becomes

wP

[e's} n
=2 2 anp lkp(n+r'p+1)p

n=0 p=0

Y= (%K) gn-p (W)Y (WV)™P. (2.7)

Now equating (2.6) and (2.7) and then
substituting wy=t, we get

1 1
1+ kvvy)% exp*x -x(1+ kt)k*GE x(1+kt) k ulJ\r’tktA

> Yek(cK)on UV, (2.8)

n=0

where

n+rk UV P
o+r gp(u)vP.

This completes the proof the theorem.

Gn(UV) = iapk“'pp
p=0

Special case 1: Now putting k=1 in our
Theorem 3we get the following result on
generalized Laguerre polynomials:

Result 1: If

GO, uW) = Ya, L% (x)ga (Ww", (2.9)
n=0
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where g,(u) is an arbitrary polynomial of
degree n, then

i} vt
(1=1) exp(—xt)GFX(l”)’ “’mk

=zocsn(u,v)L(n%;")(x)t", (2.10)
n:

where

n n+r
on(u,v) = Zapr+rkgp(u)vp.

which is also found derived in*®.

To prove the Theorem 4, we shall take help of
the following generating function’:

a+l-k

(1+kt) « exp

1
= 1
X - x(1+ kt) k éYnﬁrﬁx(1+ kt)k’k‘s

o0

m n+r+m a—mK (y- m
= Zok m Yodrrm (G KOt (2.11)

m=
3. Proof of theorem 4 :

R.H.S.= iolc;n(x,u,v)tn
n=0

5 g pp*r+n a—nk “lk\n
= Zoap gp(u)(Vt)p ZO n Yp+r+n(X1k)
p= n=

l+a-k

- §Oap gp (U)(VE)P(L+ k)
-

exp{x -x(1+ kt)%}Y§‘+rex(1+ kt)k: kj
[using (2.11)]
— (L+kt) S5 exp{x Cx(1+ kt)%]
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‘ §Oap Y Bx(1+ ko)t kjgp (U)(vt)P
p=

lta

= (14 kt) 5 exp{x -x(1+ kt)%}Gex(1+ kt)f;u,vtj,
[using (1.7)]

=L.HS,

which is Theorem 4.

Special case 2: Now putting k = 1 in our
Theorem 4 we get the following result on
generalized Laguerre polynomials:

Result 2: If

GO, W) = Tan L} (00n (W, (3.1)

where g,(u) is an arbitrary polynomial of
degree n, then

(1+t)* exp(-xt) G(X(L+1), u, V)= ioon(x,v,u)tﬂ,
(3.2

where

(X,u,V) En:a Fn-'-rkL(“”J'p)(x) (u)vP
On y Yy 020 p p+r_ n+r gp '

which is found derived in*.

Corollary 1: If we put r=0 in Theorem 4,
then we get the following theorem:

Theorem 5: If

GO0, W) = 2an LE (K (W (3.3)
then

l+a-k

(1+kt) «

exp{x -x(1+ kt)%}Gex(1+ kt)%;u,vtj
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= Yon(x,u,v)t",
n=0

(3.4)

where

4 Nk o—nk+pk
on(x,u,v) Yapk™P 0 \A PE(x;k)gp (u)vP.
p=0

Special case 3: Now putting k = 1 in our
Theorem 5 we get the following result on
generalized Laguerre polynomials:

Result 3: If
G(x,u,w) = Y an L (x)gn (W" (3.5)
n=0
then

(L+t)%exp(-xt) G(x(1+t), u, vt)= %an(x,u,v)t“,

(3.6)
where

n n

on(X,U,v) ZapF kL&“”ﬂ’) (X)gp(uvP,
p=0 p

which is found derived in*®.

4. Applications: Some interesting
applications of the Theorem 5 are given below:

As an application of Theorem 5, we
consider the following generating relation®:

[} nl

. a(y- By n
,Eor(ﬁ+nl+1) i (x; k) Zw (y; Dt

_ -5 expfx- x(1-t) - rfx-nt L
=(1-1) exp{x X(1-t) }HMx(l t) 1 IB,

(4.2)
where

H[X ] S !

————— Y (x; k).
n=o L(B+nl+1)
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If in our theorem, we take
nl!

~ [ _ B
“TGrneD’ and gn(u) =24 (u;1)

an

then

1+

G(xu,w) = (L-w) " ¥ eXp{x - x(1+ w)-%}

HMx(l-w)i,iulvv\\//H.

Therefore by the application of our Theorem
5 we get the following generalization of the
result (4.1):

(1+kt) 5 (1—vt)*@exp{x -x(1+ kt)%(l—vt)’%}
1l
< HMx(l- kt)k (L= vty U VtH
1-vt
n
= Zan(xvurv)tnv (42)
n=0
where

on(X,u,v) = %apk“'PF:’kYﬂ“““pk (X K)gp (U)VP.
p=0

Fork=1=1and o= 3, the generating
relation (4.1) is converted to Hille-Hardy
formula which can be easily generalized by
result 3.

5. Conclusion

From the above discussion, it is clear
that whenever one knows a bilateral generating
relation of the form (1.5, 1.7) then the
corresponding mixed trilateral generating
relation can at once be written down from (1.6,
1.8). So one can get a large number of mixed
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trilateral generating relations by attributing
different suitable values to in (1.5,1.7).

References

1.

Konhauser, J.D.E., Biorthogonal olynomials
suggested by the Laguerre polynomials,
Pacific J. Math., 21, 303-314 (1967).
Carlitz, L., Anote on certain biorthogonal
polynomials, Pacific J. Math., 24, 425-430
(1968).

Srivastava, H. M., On the Konhauser sets
of Biorthogonal polynomials suggested by
the Laguerre polynomials, Pacific J. Math.,
49(2), 489-492 (1973).

Ultra Scientist Vol. 26(2)A, (2014).

. Alam, S. and Chongdar, A.K., On generating

functions of modified Laguerre polynomials,
Rev. Real Academia de Ciencias Zaragoza,
62, 91-98 (2007).

. Das,S. and Chatterjea, S.K., On a partial

differential operator for Laguerre polynomials,
Pure Math. Manuscript, 4, 187-193 (1985).

. Sharma, R. and Chongdar, A.K., Some

generating functions of Laguerre polynomials
from the Lie group view point, Bull. Cal.
Math. Soc., 82, 527-532 (1990).

. Samanta, K.P. and Samanta, B., On bilateral

generating functions of Konhauserbiorthogonal
polynomials, Communicated (2014).



