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Abstract

In this paper we generate pair of integer sequences using third
order recurrence relation

pn+3 = qn+2 + qn+1 + qn n > 0
qn+3 = pn+2 + pn+1 + pn n > 0

This process of constructing two sequences  0iip  and

 0iiq  is called 2-Fibonacci sequences5.
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The process of construction of the
Fibonacci numbers is a sequential process1,2.
Atanassov K.3,4 consider two infinite sequence
{an} and {bn} which have given initial values
a1, a2 and b1, b2. Sequences {an} and {bn} are
generated for every natural number n > 2 by
the coupled equations,

an+2 = bn+1 + bn; bn+2 = an+1 + an

In this paper we consider two infinite

sequence 0iip  and  0iiq  which have
given three initial values a, c, e and b, d, f

(which are real numbers). Sequences   0ii

and   0ii  are generated for every natural
numbers n > 3 by the coupled equations

pn+3 = qn+2 + qn+1 + qn n > 0
qn+3 = pn+2 + pn+1 + pn n > 0
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If we set a = b, c = d, e = f then the

sequence  0iip  and  0iiq  will coincide

with each other and with the sequence  0iiF ,
which is a generalized Fibonacci sequence.

where, Fo(a,c,e)=a, F1(a,c,e)=c, F2(a,c,e)=e,
   Fn+3(a,c,e)=Fn+2(a,c,e)+Fn+1(a,c,e)+ Fn(a,c,e)

2. The 2f-Sequences :

We are constructing two sequences

 0iip  and  0iiq  by the following way –

p0 = a, p1 = c, p2 = e;   qo = b, q1 = d, q2 = f

pn+3 = qn+2 + qn+1 + qn n > 0

qn+3 = pn+2 + pn+1 + pn n > 0       (2.1)

where, a,b,c,d,e,f are real numbers.

First we shall study the properties of

the sequence  0iip  and  0iiq  defined by

equation (2.1). The first ten terms of the
sequences defined in equation (2.1) are shown
in table below5 :

n pn qn

0 a b
1 c d
2 e f
3 b + d + f a + c + e
4 a + c + e + f + d b + c + d + e + f
5 a + b + 2c + d + 2f + 2e a + b + c + 2d + 2e + 2f
6 2a + 2b + 3c + 3d + 4e + 3f 2a + 2b + 3c + 3d + 3e + 4f
7 3a + 4b + 5c + 6d + 6e + 7f 4a + 3b + 6c + 5d + 7e + 6f
8 7a + 6b + 10c + 10d + 12e + 12f 6a + 7b + 10c + 10d + 12e + 12f
9 12a + 12b + 18c + 18d + 22e + 22f   12a + 12b + 18c + 19d + 21e + 22f

Theorem 1 : For every integer n > 0

(a) p5.n + q1 = q5.n + p1
(b) p5.n+1 + q2 = q5.n+1 + p2
(c) p5.n+2 + q3= q5.n+2 + p3
(d) p5.n+3 + q4 = q5.n+3 + p4

We prove the above results by induction

hypothesis.

Proof (a) Assume that the result is
true for some integer n > 1.

     Now by equation (2.1) we can write –
p5.n+5 + q1 = q5.n+4 + q5.n+3 + q5.n+2 + q1
      = p5.n+3 + p5.n+2+p5.n+1+q5.n+3 + q5.n+2+ q1



      = p5.n+3 + p5.n+2+q5.n+3 + q5.n+2+p5.n+1+ q1
      =p5.n+3 + p5.n+2+q5.n+3 + q5.n+2 +q5.n+1+p1

                                 (by ind. hyp.)
       = p5.n+3 + p5.n+2+ p5.n+4+ p1(By eq. 2.1)
       = p5.n+4  + p5.n+3 + p5.n+2    + p1

          = q5.n+5+p1    (By eq. 2.1)

Hence the result is true for all integers n > 0.

Proof (b) : Assume that the result is
true for some integer n > 1.

Now by equation (2.1) we can write –
p5.n+6 + q2 = q5.n+5 + q5.n+4 + q5.n+3 + q2

 = p5.n+4+p5.n+3+p5.n+2+q5.n+4+q5.n+3+q2
            = p5.n+4+p5.n+3+q5.n+4+q5.n+3+p5.n+2+q2
            = p5.n+4+p5.n+3+q5.n+4+q5.n+3+q5.n+2+p2

                      (by ind. hyp.)
 = p5.n+4+p5.n+3+p5.n+5+p2 (By eq. 2.1)
 =p5.n+5+p5.n+4+p5.n+3+p2
  = q5.n+6+p2    (By eq. 2.1)

Hence the result is true for all integers n > 0.

Some results for particular value of
sequences {i} and {i} defined in equation
(2.1).
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