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Abstract

Cosmological models with variable gravitational constant (G)
and bulk viscosity in C-field cosmology for flat FRW space-time are
investigated. To get the deterministic model of the universe, we have
assumed G = Rn where R is the scale factor and n is a constant. Under
this assumption, we have investigated two C-field cosmological models

for  two cases: (i)  = constant, (ii)  = constant, 
R
R3 

 where  is

the coefficient of bulk viscosity,  the expansion in the model. The
physical and geometrical aspects of the models and the effect of bulk
viscosity related with the observation are discussed.
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1. Introduction

In the early universe, all the inves-
tigation dealing with the physical processes use
a model of the universe, usually called the ‘big-
bang’ model. However, the big-bang model is
known to have the following problems: (i) The
model has singularity in the past and possible
one in future. The singularity signals mathema-
tically inconsistency and physical incompleteness.
(ii) The conservation of energy is violated in
the big-bang model. (iii) The big-bang models

based on reasonable equations of state lead to
a very small particle horizon in the early
epochs of the universe. This fact gives rise to
the horizon problem in the universe. (iv) No
consistent scenario exists within the frame
work of big-bang model that explains the origin,
evolution and characteristic of structures in the
universe at small scales. (v) Flatness problem.

If a model explains successfully the
creation of positive energy matter without
violating the conservation of energy then it is
necessary to have some degree of freedom
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which acts as a negative energy mode. Thus a
negative energy field provides a natural way
for creation of matter. It is worthwhile to
mention that classical singularity theorems
cease to be operational when positivity of energy
density is not guaranteed. Thus, the introduction
of a negative energy field may solve two of
the five difficulties faced by big-bang model.
Hoyle and Narlikar1 adopted a field theoretic
approach introducing a massless and chargeless
scalar field to account for creation of matter.
In C-field theory, there is no big-bang type
singularity. Narlikar2 has pointed out that
matter creation is accomplished at the expense
of negative-energy C-field. Narlikar and
Padmanabhan3 have obtained a solution of
Einstein’s field equations which admit relation
and a negative energy massless scalar creation
field as a source. They have shown that cosmo-
logical model based on this solution satisfies
all the observational tests and is a viable
alternative to the standard big-bang model and
free from singularity and particle horizon and
also provides a natural explanation to the
flatness problem. Vishwakarma and Narlikar4

have discussed modeling repulsive gravity with
creation of matter. Bali and Tikekar5 have
investigated C-field cosmological models for
dust distribution in flat FRW space-time with
variable gravitational constant. Recently Bali
and Kumawat6 have investigated C-field
cosmological models based on Hoyle-Narlikar
theory with variable gravitational constant using
FRW space-time for positive and negative
curvature for dust distribution. It has been argued
for a long time in the early stage of cosmic
expansion that the dissipative process may well

account for the high degree of isotropy we
observe today. Padmanabhan and Chitre7 have
investigated that presence of bulk viscosity
leads to inflationary like solution. The effect
of bulk viscosity on the cosmological evolution
has been studied by number of authors viz.
Misner8,9, Belinski and Khalatnikov10, Saha11,
Sahni and Starobinsky12, Bali and Pradhan13.
Dirac14 originally suggested the variation of
gravitational constant on the basis of his large
number hypothesis. In an evolving universe, it
is natural to consider G=G(t) as G couples geometry
to matter.  Pochoda  and Schwarzschild15,
Gamow16 studied the solar evolution in the
presence of a time varying gravitational
constant. Demarque et al.17 considered an
ansatz in which ntG  and showed that for
| n | < 0.1,

111 yr10 x 2
G
G 


Barrow18 assumed the ansatz ntG  and
obtained from helium abundances

 
112 yr109.3)h  x  2

G
G 


by assuming flat universe and -5.9x10-3

<h<7x10-3.

Copi et al.19 obtained a constraint on
the variation of G by using WMAP and the
big-bang nucleosynthesis observations for
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  113113 yr10 x 4

G
Gyr10x 3


Subsequently, mathematically well
known posed alternative theories of gravity
were developed to generalize Einstein’s
general theory of relativity by including variable
G and satisfying conservation equation. Many
attempts have been proposed for the possible
extension of general relativity with time
dependent G (Brans and Dicke20, Hoyle and
Narlikar21,22, Canuto et al.23).

In this paper, we have investigated
two C-field cosmological models with bulk
viscosity and variable gravitational constant in
flat FRW space-time for dust distribution. In
the first model, we have assumed G = Rn, R is
scale factor and n is a constant,  = constant,
 being the coefficient of viscosity and  the
expansion in the model. In the second model,

we have assumed  /R,R3/R,R G    being

a constant and R is the scale factor. The
physical aspects of the models related with
the observations are also discussed.

1. The metric and field equations :

We consider the flat FRW model as

  222222222 dsinrdr[dr t)Rdtds

 
(1)

Einstein’s field equation by introduction of C-
field is modified as

 
 j

i(c)

j
i(m)

j
i

j
i

TT(G 8g R
2
1R  (2)

The energy momentum tensor for viscous fluid

is taken as

  j
i

j
i

j
i

j
i(m)

vvgv vT  (3)

and

 






 


 CCg

2
1CC fT j

i
j

i
j
i(c)  (4)

where 
 

ii dx
dCC and 0  f  .

Here two cases arise

Case I.  = constant = (say)  (5)

After using the condition (5), the field equation
(2) for metric (1) leads to

 





  2

2

2
C f

2
12 (t)G 8

R
R3 


 (6)

 





  2

2

2
Cf

2
1 G(t)8

R
R

R
R2 


 (7)

The conservation equation

 0TG 8 j
j

i 
  (8)

leads to

 
CC fG 8Cf

2
12G8 2









  

   0
R
RC 3f

R
R3

R
R3 2 










 (9)



which yields  1C   when used in the source
equation.

Equations (6) and (7) lead to

 
 

 3[G 4
R
R2

R
R

2

2
 (10)

Using  1C   in equation (7), we have

 
 G8 Gf4

R
R

R
R2

2

2
 (11)

To obtain the deterministic solution of equation
(11), in terms of cosmic time t, we assume

 nR G    (12)

where n is a constant and R is the scale factor.

From equations (11) and (12), we have

 
1n

2
RK 

R
RR2 


  (13)

where  K.2f4 

To get the solution of equation (13), we assume

that  F(R).R 

This leads to 
 

dR
dFF with F FR ''  . Thus

equation (13) leads to

 
1n

22
RK 

R
F

dR
dF   (14)

which leads to

 

R
L

3n
KRF

2n
2 






 (15)

which again leads to

    

 

3n
dt

3)L(nKR

dRR
3n 


  (16)

where L is the constant of integration.

To obtain the determinate value of R, we assume
that n = 3/2. Thus equation (16) leads to

 
dt

3
2K

K
L

2
3R

dRR

3/2


  (17)

From equation (17), we have

 

2K
3Lb)atR 23/2   (18)

where

 

2
3K 

2
1   a   (19)

 

4
3N    b   (20)
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and N is the constant of integration. Thus we
have

 1
223

2K
3Lb)atR  G  








   (21)

From equations (10), (18) and (21), we have

 







 


 24

2K
3Lb)(at

K
4Lab)at8a

8
2

2
22

(22)

Thus the metric (1) after using equation (18)
leads to

 





 

34
222

2K
3Lb)atdtds

          222222 dsinrdrdr  23(a)

which leads to

  222228/322 dsindrdrtdtds

by chosing

 0.  b 1,  a 0,   L   23(b)

Now equation (9) leads to

 
CCGf8CfG4G16GG8 2  

    0
R
RCGf24

R
RG 24

R
RG 24 2 












 (24)
     Equations (18), (21), (22) and (24) lead to

 

f4
1

2K
3Lb)atC

3
22






  

  dt
K
L

2
3b)(at b)a(at48

2
2





 

 
 

a
K

24Lb)at16a
f4

1 333

 


 

dt 
K
L

2
3b)atb)at 23





 


 (25)
Thus equation (25) leads to

 


















f3
2a

f
2C

2
2  (26)

 
 2f4 K  and 

2
3K

2
1  a , then equation

(26) leads to

 1C2   (27)

which leads
 1C 

and C = t.  (28)

Here we find  1C  , which agrees with the
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value used in source equation. Thus creation
field C is proportional to time t and the metric (1)
for the constraints mentioned above, leading to

 





 

34
222

2K
3Lb)atdtds

    222222 dsinrdrdr  29(a)

which leads to

  222228/322 dsindrdr tdtds
 29(b)

by choosing a = 1, b = 0, L = 0. The model
29(b) is the same model as obtained by Bali
and Tikekar5.

The homogeneous mass density , the
gravitational constant G, the scale factor ā(t)
and the deceleration parameter q for the model
(23) are given by

 







 


 24

2K
3Lb)(at

a
K
4Lb)at8a

8
2

222

(30)

 1
2

2K
3Lb)(at  G  







   (31)

 32
2

2K
3Lb)(at(t)a







   (32)

 











 2b)8K(at

9L
2
1   q  (33)

Case – II. Let  = constant and

 

R
R3 

  (34)

For this case the field equation (2) for metric
(1) leads to

 












 2

2

2
Cf

2
1

R
R6 G(t)8

R
R3 


 (35)

 








 


R
R3Cf

2
1  G(t)8

R
R

R
R2 2

2

2 



 (36)

The conservation equation
 0TG 8 j

j
i 



leads to

 

R
R6G8Cf

2
1

R
R6G8 2




 




















  0
R
RC3f

R
R3CC f

R
R3 2
2

2
















(37)

which yields  1C  when used in the source
equation.

Equations (35) and (36) lead to

     
 








 


R
R9G 4

R
R2

R
R

2

2 
  (38)

Using  1C   in equation (36), we have
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Gf4
R
RG 24

R
R

R
R2

2

2






 (39)

To obtain deterministic solution of equation
(39), we assume

 

R
R  G  


  (40)

where R is a function of t alone.
Equations (39) and (40) lead to

 

R
R2

R
R1)K

R
R2

2

2 



    (41)

where  .2  f4 andK 24 

Equation (41) leads to

 

 







2

R
R1)K

R
R2

  (42)

From equation (42), we have

 
t2

1K

eRR  


 (43)

Equation (43) leads to

  
 







 







 




2
3KN

2
3KeR

t
2

3K





 (44)

where N is constant of integration. Thus we
have

 















 







 



2
3K Ne

2
3K

e
R
RG  

t

t









(45)

From equations (38), (44) and (45) using 24=
K, we have

 















 







 
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




 



2
3KNe

2
3K

2)Ke3
2

3K2N
8

t

t









 (46)

Thus the metric (1) after using equation (44)
leads to

 















 







 


3K
4

t
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2
3KN

2
3Kedtds





    222222 dsinrdrdr  (47a)

which leads to
 

  222223K
4t

22 dsindrdredtds
 (47b)
In absence of bulk viscosity i.e. K  0 then
the model leads to

 
 222223

4t
22 dsindrdredtds

 (47c)
by choosing N = 0 and ℓ  = 1.

Now equation (37), using   and K,24 

2  f4   leads to
 

2

2
2
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RGK  

R
R2KG CG2

R
RG2K GG8





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0
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





 (48)
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Substituting equation (44), (45) and (46) into
equation (48), we have

 

t

2t
2

2
3KNe
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2
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2
3KNe

2
3K

9)3Kee
2

3K15)K
2
N

2
3KN






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
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









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(49)

To get the deterministic value of  ,C  we
assume N = 0. Thus equation (49) leads to

 

3)K
12C 

3)K
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dt
Cd 2

2








 (50)

From equation (50), we have

 1C2   (51)
which leads to

C = t  (52)

Here we find  1C   which agrees
with the value used in the source equation.
Thus creation field C is proportional to time t
and metric (1) for the constraints mentioned
above, leading to
 














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 
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t
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2
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
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  222222 dsinrdrdr (53)

The homogeneous mass density , the gravi-
tational constant G, the scale factor ā(t) and
the deceleration parameter (q) for the model
(47) are given by
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

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














 

 t2
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e
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2
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   q





 (57)

In the absence of bulk viscosity, the above
mentioned quantities lead to
 t6e3N8   (58)

 

2
N3e

2
3

e  G  
t

t












 (59)

 32t

2
3N

2
3e    (t)a

















 (60)
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












 
 t2

t2t

e

ee
2

3N

   q




 (61)

Discussion and Conclusion

For the model (23), the spatial volume
increases as time increases. Thus inflationary
scenario exists. The matter density decreases
as time increases. Since the deceleration
parameter q<0, hence the model (23) represents

an accelerating universe.
 

H.
t
1

G
G




 G 

 when t  0 and G  0 when t  . The
creation field C increases with time and
 1.C   These results match with the astrono-
mical observations and theoretical results.

For the model (53), the matter density
decreases with time. The spatial volume
increases with time. Thus inflationary scenario

also exists for the model (53). 
 

H.
t
1

G
G




G   when t  0 and G  finite quantity
when t  . The creation field C increases
with time and  1.C   Since the deceleration
parameter q < 0, hence the model (53)
represents an accelerating universe.

The coordinate distance to the horizon
rH(t) is the maximum distance a null ray could
have traveled at time t from the infinite past
i.e.

 

R(t)
dt   t)r

t

H 




We could extend the proper time t to
() in the past because of the non-singular
nature of the space-time. Now

 

t
dt   t)r

t

0H 
 

This integral diverges at lower limit
showing that the models (23) and (53) are free
from horizon.
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